题目列表(包括答案和解析)
设函数![]()
(1)当
时,求曲线
处的切线方程;
(2)当
时,求
的极大值和极小值;
(3)若函数
在区间
上是增函数,求实数
的取值范围.
【解析】(1)中,先利用
,表示出点
的斜率值
这样可以得到切线方程。(2)中,当
,再令
,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了
在区间
导数恒大于等于零,分离参数求解范围的思想。
解:(1)当
……2分
∴![]()
即
为所求切线方程。………………4分
(2)当![]()
令
………………6分
∴
递减,在(3,+
)递增
∴
的极大值为
…………8分
(3)![]()
①若
上单调递增。∴满足要求。…10分
②若![]()
∵
恒成立,
恒成立,即a>0……………11分
时,不合题意。综上所述,实数
的取值范围是![]()
已知函数
,(
),![]()
(1)若曲线
与曲线
在它们的交点(1,c)处具有公共切线,求a,b的值
(2)当
时,若函数
在区间[k,2]上的最大值为28,求k的取值范围
【解析】(1)
,
∵曲线
与曲线
在它们的交点(1,c)处具有公共切线
∴
,![]()
∴![]()
(2)当
时,
,
,![]()
令
,则
,令
,
∴
为单调递增区间,
为单调递减区间,其中F(-3)=28为极大值,所以如果区间[k,2]最大值为28,即区间包含极大值点
,所以![]()
【考点定位】此题应该说是导数题目中较为常规的类型题目,考查的切线,单调性,极值以及最值问题都是课本中要求的重点内容,也是学生掌握比较好的知识点,在题目中能够发现F(-3)=28,和分析出区间[k,2]包含极大值点
,比较重要
| 1 |
| 2 |
| 1 |
| 2 |
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
|
| 9 |
| 23 |
| 1 |
| 2 |
| 1 |
| 2 |
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
|
| 9 |
| 23 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com