③特殊角的三角函数值:sin30º=cos60º=­­.sin45º=cos45º=­­.sin60º=cos30º=­­. tan30º=.tan45º=1.tan60º­=. 查看更多

 

题目列表(包括答案和解析)

观察可得最简公分母是(x+1)(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.

【解答】

(2)方程的两边同乘(x+1)(x-1),得

2(x-1)+4=x2-1,

x2-2x-3=0,

(x-3)(x+1)=0,

解得x1=3,x2=-1,

检验:把x=3代入(x+1)(x-1)=8≠0,即x=3是原分式方程的解,

x=-1代入(x+1)(x-1)=0,即x=-1不是原分式方程的解,

则原方程的解为:x=3.

【点评】此题考查了实数的混合运算与分式方程的解法.此题难度不大,但注意掌握绝对值的性质、负指数幂的性质、零指数幂的性质以及特殊角的三角函数值,注意解分式方程一定要验根.

20.(本题满分5分)如图,已知△ABC,且∠ACB=90°。

(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明);

①以点A为圆心,BC边的长为半径作⊙A;

②以点B为顶点,在AB边的下方作∠ABD=∠BAC.

(2)请判断直线BD与⊙A的位置关系(不必证明).

 


查看答案和解析>>

由绝对值的性质、负指数幂的性质、零指数幂的性质以及特殊角的三角函数值,即可将原式化简为×1-,继而求得答案;

(1)原式=×1-=1;

查看答案和解析>>

在数学上,常用一些特殊的三角函数公式来求一些特殊角的三角函数值,例如两角和与差的正余弦公式:sin (α±β)=sin αcos β±cos αsin β,cos( α±β)=cos αcos β±sin αsin β。试用上述公式计算sin75 °和cos75 °的值。

查看答案和解析>>

在初中,我们学习过锐角的正弦、余弦、正切和余切四种三角函数,即在图1所示的直角三角形ABC,∠A是锐角,那么
sinA=数学公式,cosA=数学公式,tanA=数学公式,cotA=数学公式

为了研究需要,我们再从另一个角度来规定一个角的三角函数的意义:
设有一个角α,我们以它的顶点作为原点,以它的始边作为x轴的正半轴ox,建立直角坐标系(图2),在角α的终边上任取一点P,它的横坐标是x,纵坐标是y,点P 和原点(0,0)的距离为数学公式(r总是正的),然后把角α的三角函数规定为:
sinα=数学公式,cosα=数学公式,tanα=数学公式,cotα=数学公式
我们知道,图1的四个比值的大小与角A的大小有关,而与直角三角形的大小无关,同样图2中四个比值的大小也仅与角α的大小有关,而与点P在角α的终边位置无关.
比较图1与图2,可以看出一个角的三角函数的意义的两种规定实际上是一样的,根据第二种定义回答下列问题,每题4分,共16分
(1)若270°<α<360°,则角α的三角函数值sinα、cosα、tanα、cotα,其中取正值的是______;
(2)若角α的终边与直线y=2x重合,则sinα+cosα=______;
(3)若角α是钝角,其终边上一点P(x,数学公式),且cosα=数学公式,则tanα______;
(4)若 0°≤α≤90°,则sinα+cosα 的取值范围是______.

查看答案和解析>>

提出问题:小明是个爱思考的学生,在学习了三角函数后小明发现:
sin90°=1,sin45°=
2
2
,90°是45°的两倍,但三角函数值却是
2
倍;
sin30°=
 
,sin60°=
 
,60°是30°的两倍,但三角函数值却是
 
倍,
考虑到cos45°,cos30°的三角函数值,估计sin2α=2sinαcosα,代入检验发现以上两组角度都符合.
解决问题:那么如何证明sin2α=2sinαcosα呢?
小明思考再三,发现在△ABC中(图2),高AD=ABsinB,可得S△ABC=
1
2
BC•ABsinB

利用这个结论证明上述命题结论.聪明的你也能解决这个问题吗?
如图2,在△ABC中,AB=AC,AD⊥BC于D,设∠BAD=α,求证:sin2α=2sinαcosα.
推广应用:解决了以上问题后,小明思考再三,终于发现了sin(α+β)与sinα,cosα,sinβ,cosβ的关系,
你能结合图3证明出自己所猜想的sin(α+β)与sinα,cosα,sinβ,cosβ的关系吗?
并利用上述关系求出sin75°的值(保留根号).
精英家教网

查看答案和解析>>


同步练习册答案