所以.当时.取得最小值. 查看更多

 

题目列表(包括答案和解析)

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).

(1)当圆柱底面半径取何值时,取得最大值?并求出该

最大值(结果精确到0.01平方米);

(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线所在异面直线所成角的大小(结果用反三角函数表示)

查看答案和解析>>

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.骨架将圆柱底面8等分,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(Ⅰ)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);
(Ⅱ)在灯笼内,以矩形骨架的顶点为端点,安装一些霓虹灯.当灯笼底面半径为0.3米时,求图中两根直线型霓虹灯A1B3、A3B5所在异面直线所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).

(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);

(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线A1B3与A3B5所在异面直线所成角的大小(结果用反三角函数表示).

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>

探究函数,,x∈(0,+∞)的最小值,并确定取得最小值时x的值,列表如下:
请观察表中y值随x值变化的特点,完成下列问题:
(1)当x>0时,在区间(0,2)上递减,在区间______上递增;所以,x=______时,y取到最小值为______;
(2)由此可推断,当x<0时,有最______值为______,此时x=______;
(3)证明:函数在区间(0,2)上递减;
(4)若方程x2-mx+4=0在[0,3]内有两个不相等的实数根,求实数m的取值范围。

查看答案和解析>>


同步练习册答案