根据可以算出小球在图上3个点速度的方向点评:研究平抛运动的方法是将其分解为水平分运动和竖直分运动.所以解决平抛运动问题时.要分别研究它的两个分运动的情况.特别是要注意抓住竖直分运动匀(初速度为零.加速度为g.匀变速直线运动规律)这一解决问题的关键.根据平抛运动特点和实际情况.灵活解决实际问题.㈣科学探究型试题题型4.取一轻质弹簧.上端固定在铁架台上.下端系一金属小球.如图甲所示.把小球 查看更多

 

题目列表(包括答案和解析)

根据单摆周期公式T=2π
1
g
,可以通过实验测量当地的重力加速度.如图1所示,将细线的上端固定在铁架台上,下端系一小钢球,就做成了单摆.精英家教网
(1)用游标卡尺测量小钢球直径,求数如图2所示,读数为
 
mm.
(2)以下是实验过程中的一些做法,其中正确的有
 

a.摆线要选择细些的、伸缩性小些的,并且尽可能长一些
b.摆球尽量选择质量大些、体积小些的
c.为了使摆的周期大一些,以方便测量,开始时拉开摆球,使摆线相距平衡位置有较大的角度
d.拉开摆球,使摆线偏离平衡位置大于5°,在释放摆球的同时开始计时,当摆球回到开始位置时停止计时,此时间间隔△t即为单摆周期T
e.拉开摆球,使摆线偏离平衡位置不大于5°,释放摆球,当摆球振动稳定后,从平衡位置开始计时,记下摆球做50次全振动所用的时间△t,则单摆周期T=△t/50
(3)若该实验单摆静止时摆球重心在球心的正下方,仍将从悬点到球心的距离当作摆长L,通过改变摆线的长度,测得6组L和对应的周期T,画出L-T2图线,然后在图线上选取A、B两个点,坐标如图3所示.采用恰当的数据处理方法也能正确的求出当地的重力加速度,则计算重力加速度的表达式应为g=
 

查看答案和解析>>

根据单摆周期公式,可以通过实验测量当地的重力加速度。如图1所示,将细线的上端固定在铁架台上,下端系一小钢球,就做成了单摆。
(1).用游标卡尺测量小钢球直径,求数如图2所示,读数为_______mm。

(2).以下是实验过程中的一些做法,其中正确的有______。
a.摆线要选择细些的、伸缩性小些的,并且尽可能长一些
b.摆球尽量选择质量大些、体积小些的
c.为了使摆的周期大一些,以方便测量,开始时拉开摆球,使摆线相距平衡位置有较大的角度
d.拉开摆球,使摆线偏离平衡位置大于50,在释放摆球的同时开始计时,当摆球回到开始位置时停止计时,此时间间隔△t即为单摆周期T
e.拉开摆球,使摆线偏离平衡位置不大于50,释放摆球,当摆球振动稳定后,从平衡位置开始计时,记下摆球做50次全振动所用的时间△t,则单摆周期T=△t /50
(3).若该实验单摆静止时摆球重心在球心的正下方,仍将从悬点到球心的距离当作摆长L,通过改变摆线的长度,测得6组L和对应的周期T,画出L-T2图线,然后在图线上选取A、B两个点,坐标如图所示.采用恰当的数据处理方法也能正确的求出当地的重力加速度,则计算重力加速度的表达式应为g=________.

查看答案和解析>>

根据单摆周期公式,可以通过实验测量当地的重力加速度。如图1所示,将细线的上端固定在铁架台上,下端系一小钢球,就做成了单摆。

(1).用游标卡尺测量小钢球直径,求数如图2所示,读数为_______mm。

(2).以下是实验过程中的一些做法,其中正确的有______。

a.摆线要选择细些的、伸缩性小些的,并且尽可能长一些

b.摆球尽量选择质量大些、体积小些的

c.为了使摆的周期大一些,以方便测量,开始时拉开摆球,使摆线相距平衡位置有较大的角度

d.拉开摆球,使摆线偏离平衡位置大于50,在释放摆球的同时开始计时,当摆球回到开始位置时停止计时,此时间间隔△t即为单摆周期T

e.拉开摆球,使摆线偏离平衡位置不大于50,释放摆球,当摆球振动稳定后,从平衡位置开始计时,记下摆球做50次全振动所用的时间△t,则单摆周期T=△t /50

(3).若该实验单摆静止时摆球重心在球心的正下方,仍将从悬点到球心的距离当作摆长L,通过改变摆线的长度,测得6组L和对应的周期T,画出L-T2图线,然后在图线上选取A、B两个点,坐标如图所示.采用恰当的数据处理方法也能正确的求出当地的重力加速度,则计算重力加速度的表达式应为g=________.

 

查看答案和解析>>

(1)某同学在做“测定匀变速直线运动的加速度”实验时,从打下的若干纸带中选出了如图所示的一条(每两点间还有4个点没有画出来),图中上部的数字为相邻两个计数点间的距离.打点计时器的电源频率为50Hz.由这些已知数据计算:

①该匀变速直线运动的加速度a=
2.05
2.05
m/s2
②与纸带上D点相对应的瞬时速度v=
1.22
1.22
 m/s.(保留3位有效数字)
(2)为了测量一个高楼的高度,某同学设计了如下实验:在一根长为l的绳两端各拴一重球,一人站在楼顶上,手执上端的重球无初速度的释放使其自由下落,另一人在楼下测量两球落地的时间差△t,即可根据l、△t、g得出高楼的高度(不计空气阻力).
①从原理说明此方案是否可行及理由
可行,h=
1
2
gt2,h+L=
1
2
g(t+△t)2,两个方程,两个未知数,方程可解
可行,h=
1
2
gt2,h+L=
1
2
g(t+△t)2,两个方程,两个未知数,方程可解
.②从实际测量来看,你估计最大的困难是
△t太小,难以测量
△t太小,难以测量

(3)某同学在做测定木板的动摩擦因数的实验时,设计了两种方案.
方案A:木板水平固定,通过弹簧秤水平拉动木块,如图a;
方案B:木块固定,通过细线水平拉动木板,如图b.
上述两方案中,你认为更合理的是
b
b
,该实验中需要测量的物理量是
弹簧秤示数F和木块的重量G
弹簧秤示数F和木块的重量G

查看答案和解析>>

Ⅰ.利用计算机和力传感器可以比较精确地测量作用在挂钩上的力,并能得到挂钩所受的拉力随时间的变化图象,实验过程中挂钩位置可认为不变.某同学利用力传感器和单摆来验证机械能守恒,实验步骤如下:
①如图甲所示,固定力传感器M;
②取一根不可伸长的细线,一端连接一小铁球,另一端穿过固定的光滑小圆环O,并固定在传感器M的挂钩上
(小圆环刚好够一根细线通过).
③让小铁球自由悬挂并处于静止状态,从计算机中得到拉力随时间的关系图象如图乙所示;
④让小铁球以较小的角度在竖直平面内的A、B之间摆动,从计算机中得到拉力随时间的关系图象如图丙所示.
精英家教网
请回答以下问题:
(1)由图中数据可求得小圆环O到小铁球球心的距离为
 
m;(计算时取g≈π2m/s2
(2)为了验证小铁球在最高点A和最低点C处的机械能是否相等,则
 

A.一定得测出小铁球的质量m精英家教网
B.一定得测出细线离开竖直方向的最大偏角β
C.一定得知道当地重力加速度g的大小
D.只要知道图乙和图丙中的F0、F1、F2的大小
(3)若已经用实验测得了第(2)小题中所需测量的物理量,则为
了验证小铁球在最高点A和最低点C处的机械能是否相等,只需验证
等式
 
是否成立(用题中所给物理量的符号来表示).
Ⅱ.2009年秋,甲型H1N1流感在全国各地爆发,为做好需要购买大量的体温表,市场一度出现供货不足的情况.某同学想自己制作一个金属温度计,他从实验室找到一个热敏电阻,通过查资料获得该热敏电阻的阻值R随温度t变化的规律如图甲所示.该同学进行了如下设计:将一电源(电动势E=1.5V、内阻不计)、电流表(量程5mA、内阻Rg=100Ω)、电阻箱R′及用作测温探头的热敏电阻R组成如图乙所示的电路,把电流表的电流刻度改为相应的温度刻度,就得到了一个简单的“金属电阻温度计”.
(1)电流表刻度较小处对应的温度值
 
;(填“较高”或“较低”)
(2)若电阻箱阻值R′=70Ω时,图丙中电流表5mA刻度处时热敏电阻的阻值R=
 
Ω,对应的温度数值为
 
℃.

查看答案和解析>>

1. B 解析:由图可知AB、BC、CD的距离分别是10cm30cm50cm,它们的距离之比为1:3:5,说明水滴做自由落体运动,在A到B、B到C,C到D所用时间相等,由得,,所以光源应满足的条件是间歇发光其间隔时间为0.14s。

2. C 解析:依题意作出物体的v-t图象,如图1所示。图线下方所围成的面积表示物体的位移,由几何知识知图线②、③不满足AB=BC。只能是①这种情况。因为斜率表示加速度,所以a1<a2,选项C正确。

 

3. D 解析:对挂钩进行受力分析,如图所示,图中α、β为A、B绳与竖直方向的夹角,两绳拉力如图中FA0、FB0所示;当右侧杆向左平移,则α、β均变小,两绳拉力如图中FA、FB所示;由图可知,A、B绳的拉力均变小,AB错;由于挂钩受力平衡,两绳对挂钩的拉力合力一定与衣服对挂钩的拉力大小相等、方向相反,因此合力不变,D正确。

 

4. A 解析:从0到的时间内,磁感应强度从2均匀减小到0,根据楞次定律和右手定则可判断出感应电流的方法与规定的方向相反,大小为:;同理,从到T的时间,磁感应强度方向向下,大小均匀增大,感应电流的磁场方向向上,由右手定则可知感应电流的方法与规定的方向相反,大小为:,故A选项正确。

5. ABC 解析:从F-t图象上可以看出,在0~t1、t2~t3和t4以后的时间内,弹簧秤对钩码的拉力F等于钩码的重力10N;t1~t2这段时间内,弹簧秤对钩码的拉力F小于钩码的重力,钩码处于失重状态;t3~t4这段时间内,弹簧秤对钩码的拉力F大于钩码的重力,钩码处于超重状态,所以选项ABC正确。

6. B 解析:由图像的变化快慢可知曲线ab先变化非常快,为斥力图,cd为引力图,e点是两曲线的交点,即分子间引力与斥力相等时,此时分子间距离的数量级为10-10m,B对A错;分子间距离大于e点横坐标值时,分子间作用力表现为引力,C错;分子势能在平衡位置以内随距离增大而减小,在平衡位置以外随分子间距离增大而增大,D错.

7. C 解析:假设将小球放在弹簧顶端释放球,这就是一个常见的弹簧振子,由对称性知,球到达最低点的加速度为,本题中弹簧在最低点时压缩量比假设的模型大,故答案为C.

8. B 解析:导体杆往复运动,切割磁感线相当于电源,其产生的感应电动势E=Blv,由于杆相当于弹簧振子,其在O点处的速度最大,产生的感应电动势最大,因此电路中的电流最大。根据右手定则,电流在P、Q两处改变方向,此时的电流为零。故选择B.

9. 11.14 mm   

10.  1.5V 0.2Ω 0.4Ω 1.25W 0.1Ω 2.5

解析:由电源的伏安特性曲线读得电源电动势为E=1.5V,横截距表示短路电流I=7.5A,电源内阻为Ω。

a点对应的电源输出电压为1.0V,电流为2.5A,此时的电压和电流是加在外电阻两端的电压和流过外电阻的电流,因此Ω,电源内部热耗功率为 W。

    图线中的b点所对应的外电阻Rb上的电压为0.5V,流过其中的电流为5.0A,于是Ω  输出功率为Pb=IbUb=0.25W。

11. 解析:(1)因为电路中需要得到改装后电压表量程与电源电动势两个未知数,所以需要两个电路状态联立方程求解。连接如图所示。

(2)当当S1与S2均闭合时,由闭合电路的欧姆定律得:

即:         ①

当S1闭合,S2断开时,由闭合电路的欧姆定律得:

即:

由①②两式可得:

则电压表的量程:

12. 解析:用图象求解,做出速度时间图象如图所示,从图象看出从B上升到最高点的时间与由最高点落回A的时间之比为1:2,所以从A运动到B的时间与从B上升到最高点的时间之比为1:3,即,又    所以解得

 

13.

半径/cm

质量/m0

角速度/rad?s-1

圈数

转动动能/J

 

 

 

 

6.4

 

 

 

 

14.4

 

 

 

 

25.6

 

 

 

 

12.8

 

 

 

 

19.2

 

 

 

 

25.6

 

 

 

 

25.6

 

 

 

 

57.6

 

 

 

 

102.4

 

(2)EK = kmω2 r2 (k是比例常数)                (3)控制变量法 

14.  解析:(1)依题意分析可知:碰撞发生在第1、2两次闪光时刻之间,碰撞后B静止,故碰撞发生在x=60cm处。

(2)碰撞后A向左做匀速直线运动,设其速度为

碰撞到第二次闪光时A向左运动10cm,时间设为,有

第一次闪光到发生碰撞时间为,有:

由以上各式可得:

(3)取向右方向为正方向,碰撞前:A的速度,B的速度

碰撞后:A的速度,B的速度

由动量守恒守恒定律可得:

由以上各式可得:=2:3

 


同步练习册答案