7.若直线()通过点().则a.b必须满足关系 ▲ . 查看更多

 

题目列表(包括答案和解析)

若倾角为的直线通过抛物线的焦点且与抛物线相交于两点,则线段的长为(    )

(A)   (B)   (C)   (D)

查看答案和解析>>

若倾角为的直线通过抛物线的焦点且与抛物线相交于两点,则线段的长为(   )
A.B.C.D.

查看答案和解析>>

 【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答

             若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤.

A选修4-1:几何证明选讲

   如图,圆与圆内切于点,其半径分别为

的弦交圆于点不在上),

求证:为定值。

B选修4-2:矩阵与变换

已知矩阵,向量,求向量,使得

C选修4-4:坐标系与参数方程

在平面直角坐标系中,求过椭圆为参数)的右焦点且与直线为参数)平行的直线的普通方程。

D.选修4-5:不等式选讲

解不等式:

 

查看答案和解析>>

有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
x=cosθ
y=
2
2
sinθ
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
x=cosθ
y=
2
2
sinθ
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

一、填空题:本大题共14小题,每小题5分,共计70分.

1.        2.        3.0        4.充分而不必要        5.        6.2

7. 8.5         9.      10.1.5                11.

13.14.

二、解答题:本大题共6小题,共计90分.

15.(本小题满分14分)

(1)== ……………………………………2分

== ……………………………………………………………………………………………4分

 ……………………………………………………………………………6分         

(2)==

==…………………………………………………………………………9分

,得………………………………………………………………………10分

 ……………………………………………………………………12分

, 即时, …………………………………………………………14分

16.(本小题满分14分)

(1)在梯形中,

学科网(Zxxk.Com)四边形是等腰梯形,

…………………3分

平面平面,交线为

平面…………………………………………………6分

(2)当时,平面,………………………7分

在梯形中,设,连接,则…………………………………8分

,而,……………………………………………10分

四边形是平行四边形,…………………………………………12分

平面平面平面…………………………………………14分

18.(本小题满分16分)

(1)设椭圆的焦距为2c(c>0),

则其右准线方程为x=,且F1(-c, 0), F2(c, 0). ……………2分

设M

.      ………………………4分

因为,所以,即.

    于是,故∠MON为锐角.

所以原点O在圆C外.                            ………………………7分

(2)因为椭圆的离心率为,所以a=2c,             …………………8分

    于是M ,且    …………………9分

MN2=(y1-y2)2=y12+y22-2y1y2.  ………… 12分

当且仅当 y1=-y2或y2=-y1时取“=”号,   ……………… 14分

所以(MN)min= 2c=2,于是c=1, 从而a=2,b=,

故所求的椭圆方程是.            ………………… 16分

19.(本小题满分16分)

(1)函数的定义域为.…………………………………1分

;…………………………………………………………………………………………2分                    

,……………………………………………………………………………………3分

则增区间为,减区间为. ………………………………………………………………………4分

(2)令,由(1)知上递减,在上递增, …………6分

,且,………………………………………………8分

时, 的最大值为,故时,不等式恒成立. …………10分

(3)方程.记,则

.由;由.

所以上递减;在上递增.

,……………………………………12分

所以,当时,方程无解;

时,方程有一个解;

时,方程有两个解;

时,方程有一个解;

时,方程无解. ………………………………………………………………………………14分

综上所述,时,方程无解;

时,方程有唯一解;

时,方程有两个不等的解. ……………………………………………16分

20.(本小题满分16分)

(1)因为第一行数组成的数列{A1j}(j=1,2,…)是以1为首项,公差为3的等差数列,

所以A1 j=1+(j-1)×3=3 j-2,

第二行数组成的数列{A2j}(j=1,2,…)是以4为首项,公差为4的等差数列,

所以A2 j=4+(j-1)×4=4 j.              ……………………2分

所以A2 j-A1 j=4 j-(3 j-2)=j+2,

所以第j列数组成的数列{ Aij}(i=1,2,…)是以3 j-2为首项,公差为 j+2的等差数列,

所以Aij=3 j-2+(i-1) ×(j+2) =ij+2i+2j-4=(i+3) (j+2) 8.   …………5分

故Aij+8=(i+3) (j+2)是合数.

所以当=8时,对任意正整数i、j,总是合数   …………………6分

(2) (反证法)假设存在k、m,,使得成等比数列,

                              ………………………7分

∵bn=Ann =(n+2)2-4

,   …………………10分

又∵,且k、m∈N,∴k≥2、m≥3,

,这与∈Z矛盾,所以不存在正整数k和m,使得成等比数列.……………………12分

(3)假设存在满足条件的,那么

.                         …………………… 14分

不妨令

所以存在使得成等差数列.         …………………… 16分

(注:第(3)问中数组不唯一,例如也可以)

 

 

 

 


同步练习册答案