题目列表(包括答案和解析)
(本题14分,第(1)小题6分,第(2)小题8分)
已知函数
的定义域为
(
为常数).
(1)证明:当
时,函数
在定义域上是减函数;
(2)求函数
在定义域上的最大值及最小值,并求出函数取最值时
的值.
本题14分,第(1)小题6分,第(2)小题8分)
已知函数
.
(1)用定义证明:当
时,函数
在
上是增函数;[来源:学.科.网Z.X.X.K]
(2)若函数
在
上有最小值
,求实数
的值.
(本题14分,其中第(1)小题6分,第(2)小题8分)
设在直三棱柱
中,
,
,
依次为
的中点.
(1)求异面直线
、
所成角
的大小(用反三角函数值表示);
(2)求点
到平面
的距离.
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。有时可用函数
![]()
描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(
),
表示对该学科知识的掌握程度,正实数a与学科知识有关。
(1) 证明:当
时,掌握程度的增加量
总是下降;
(2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为
,
,
。当学习某学科知识6次时,掌握程度是85%,请确定相应的学科。
一、填空题
(每题5分)
1)
2)
3)0 4)
5)
6) ②④ 7)
8)
9)
10)
11)2009.03.files/image150.gif)
二、选择题 (每题5分)
12、A 13、B 14、B 15、D
三、解答题
16、
(1)因为
,所以∠BCA(或其补角)即为异面直线
与
所成角
-------(3分)
∠ABC=90°, AB=BC=1,所以
,
-------(2分)
即异面直线
与
所成角大小为
。
-------(1分)
(2)直三棱柱ABC-A1B
,所以
即为直线A
。 -------(2分)
中,AB=BC=1得到
,
中,得到
, -------(2分)
所以
-------(2分)
17、(10
=
-------(1分)
=
-------(1分)
=
-------(1分)
周期
; -------(1分)
,解得单调递增区间为
-------(2分)
(2)
,所以
,
,
所以
的值域为
,
-------(4分)
而
,所以
,即
-------(4分)
18、
,顾客得到的优惠率是
。 -------(5分)
(2)、设商品的标价为x元,则500≤x≤800 ------(2分)
消费金额: 400≤0.8x≤640
由题意可得:
(1)
≥
无解
------(3分)
或(2)
≥
得:625≤x≤750 ------(3分)
因此,当顾客购买标价在
元内的商品时,可得到不小于
的优惠率。------(1分)
19、(1)
与
轴的交点
为
, ------(1分)
;所以
,即
,-
----(1分)
因为
在
上,所以
,即
----(2分)
(2)若
(
),
即若
(
) ----(1分)
(A)当
时,2009.03.files/image234.gif)
----(1分)
=
=
,而
,所以
----(1分)
(B)当
时,
----(1分)
=
=
,
----(1分)
而
,所以
----(1分)
因此
(
)
----(1分)
(3)假设存在
使得
成立。
(A)若
为奇数,则
为偶数。所以
,
,而
,所以
,方程无解,此时不存在。 ----(2分)
(B) 若
为偶数,则
为奇数。所以
,
,而
,所以
,解得
----(2分)
由(A)(B)得存在
使得
成立。
----(1分)
20、(1)(A):点P与点F(2,0)的距离比它到直线
+4=0的距离小2,所以点P与点F(2,0)的距离与它到直线
+2=0的距离相等。 ----(1分)
由抛物线定义得:点
在以
为焦点直线
+2=0为准线的抛物线上, ----(1分)
抛物线方程为
。 ----(2分)
解法(B):设动点
,则
。当
时,
,化简得:
,显然
,而
,此时曲线不存在。当
时,
,化简得:
。
(2)
,
,
,
----(1分)
,
,即
,
,
----(2分)
直线为
,所以
----(1分)
2009.03.files/image321.gif)
----(1分)
由(a)(b)得:直线恒过定点
。
----(1分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com