(Ⅱ)法一:在区间上为增函数.在区间上为减函数.又... 查看更多

 

题目列表(包括答案和解析)

已知函数.

(Ⅰ)若函数依次在处取到极值.求的取值范围;

(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.

【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。

第二问中,利用存在实数,使对任意的,不等式 恒成立转化为,恒成立,分离参数法求解得到范围。

解:(1)

(2)不等式 ,即,即.

转化为存在实数,使对任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,则.

,则,因为,有.

在区间上是减函数。又

故存在,使得.

时,有,当时,有.

从而在区间上递增,在区间上递减.

[来源:]

所以当时,恒有;当时,恒有

故使命题成立的正整数m的最大值为5

 

查看答案和解析>>

对于函数y=Asin(ωx+φ)(A、ω、φ均为不等于0的常数),有以下说法:①最大值为A;②最小正周期为||;③在[0,2π]上至少存在一个x,使y=0;④由2kπ-≤ωx+φ≤2kπ+(k∈Z)解得x的区间范围即为原函数的单调增区间,其中正确的说法是(    )

A.①②③                B.①②               C.②                D.②④

查看答案和解析>>

 下列一组命题:

①在区间内任取两个实数,求事件“恒成立”的概率是

②从200个元素中抽取20个样本,若采用系统抽样的方法则应分为10组,每组抽取2个

③函数关于(3,0)点对称,满足,且当时函数为增函数,则上为减函数。

④命题“对任意,方程有实数解”的否定形式为“存在,方程无实数解”

以上命题中正确的是              

 

查看答案和解析>>

下列一组命题:                                                

①在区间内任取两个实数,求事件“恒成立”的概率是

②从200个元素中抽取20个样本,若采用系统抽样的方法则应分为10组,每组抽取2个;

③函数关于(3,0)点对称,满足,且当时函数为增函数,则上为减函数;

④命题“对任意,方程有实数解”的否定形式为“存在,方程无实数解”。             

以上命题中正确的是              

查看答案和解析>>

下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数对应数轴上的点,如图1;将线段围成一个圆,使两端点恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为(0,1),如图3.图3中直线轴交于点,则的像就是,记作。则在下列说法中正确命题是_________.

 

①  

②   在其定义域内单调递增;

③   为奇函数

的图像关于点对称。

 

查看答案和解析>>


同步练习册答案