题目列表(包括答案和解析)
已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减.给出以下四个命题:
①f(2)=0;
②x=-4为函数y=f(x)图像的一条对称轴;
③函数y=f(x)在[8,10]上单调递增;
④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.
以上命题中所有正确命题的序号为________.
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数
f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2.
⑴若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:
<m<1;
⑵若|x1|<2且|x1-x2|=2,求b的取值范围.
已知函数f(x)=-x3-ax2+b2x+1(a、b∈R).
(1)若a=1,b=1,求f(x)的极值和单调区间;
(2)已知x1,x2为f(x)的极值点,且|f(x1)-f(x2)|=|x1-x2|,若当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒小于m,求m的取值范围
已知函数f(x)=ax3+
x2-a2x(a>0),存在实数x1、x2满足下列条件:①x1<x2;②f??(x1)=f??(x2)=0;③|x1|+|x2|=2.
证明:0<a??3;
求b的取值范围;
若函数h(x)=f??(x)-6a(x-x1),证明:当x1<x<2时,|h(x)|??12a.
已知函数g(x)=ax3+bx2+cx(a∈R且a≠0),g(-1)=0,且g(x)的导函数f(x)满足f(0)f(1)≤0.设x1、x2为方程f(x)=0的两根.
(1)求
的取值范围;
(2)若当|x1-x2|最小时,g(x)的极大值比极小值大
,求g(x)的解析式.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com