15 16 三 查看更多

 

题目列表(包括答案和解析)

 

三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共76分)。

17.(12分)以下资料是一位销售经理收集来的每年销售额和销售经验年数的关系:

销售经验(年)

1

3

4

4

6

8

10

10

11

13

年销售额(千元)

80

97

92

102

103

111

119

123

117

136

 (1)依据这些数据画出散点图并作直线=78+4.2x,计算(yii2; 

 (2)依据这些数据由最小二乘法求线性回归方程,并据此计算

 (3)比较(1)和(2)中的残差平方和的大小.

 

查看答案和解析>>

(2012•长春模拟)某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号 1 2 3 4 5 6 7 8 9 10
数    学 1.3 12.3 25.7 36.7 50.3 67.7 49.0 52.0 40.0 34.3
物    理 2.3 9.7 31.0 22.3 40.0 58.0 39.0 60.7 63.3 42.7
学生序号 11 12 13 14 15 16 17 18 19 20
数    学 78.3 50.0 65.7 66.3 68.0 95.0 90.7 87.7 103.7 86.7
物    理 49.7 46.7 83.3 59.7 50.0 101.3 76.7 86.0 99.7 99.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

吉安市某校高二年级抽取了20名学生的今年三月、四月、五月三个月的月考的数学、化学成绩,计算了他们三次成绩的平均分如下表:
学生序号 1 2 3 4 5 6 7 8 9 10
数学 120 105 91 124 85 132 121 100 78 135
化学 70 68 74 82 78 71 81 62 54 90
学生序号 11 12 13 14 15 16 17 18 19 20
数学 132 92 85 123 100 97 101 96 103 105
化学 85 65 53 77 63 85 73 45 84 72
该校规定数学(≥120分)为优秀,化学(≥80分)为优秀,其余为不优秀.
(1)从这20名学生中随机抽取2名,用X表示数学成绩优秀的人数,求X的分布列及数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过10%的前提下认为化学成绩优秀与否和数学成绩优秀与否有关?

查看答案和解析>>

已知点A(1,-2,11),B(4,2,3),C(x,y,15)三点共线,那么x,y的值分别是(  )
A、
1
2
,4
B、1,8
C、-
1
2
,-4
D、-1,-8

查看答案和解析>>

三、解答题:本大题共6小题,共80分.

15.(本小题满分13分)

已知函数

(Ⅰ)求的定义域与最小正周期;

(Ⅱ)设,若的大小.

 

查看答案和解析>>


同步练习册答案