因此.二面角C-AC1-D的大小为. --12分由抛物线方程.得焦点F(1.0). 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

矩形ABCD中,AB=1,BC=2,沿AC将矩形ABCD折成一个直二面角B-AC-D,若点A、B、C、D都在一个以O为球心的球面上,则球O的表面积为

查看答案和解析>>

精英家教网如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD.SD=2,AD=
2
,E是SD上的点.
(Ⅰ)求证:AC⊥BE;
(Ⅱ)求二面角C-AS-D的余弦值.

查看答案和解析>>

精英家教网已知直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1
(1)求证:BC1∥平面CA1D
(2)求证:平面CA1D⊥平面AA1B1B
(3)求二面角C-DA1-C1的余弦值.

查看答案和解析>>

已知正方形ABCD沿其对角线AC将△ADC折起,设AD与平面ABC所成的角为β,当β取最大值时,二面角B-AC-D的大小为(  )

查看答案和解析>>


同步练习册答案