(Ⅱ)设直线与椭圆C交于P.Q两 查看更多

 

题目列表(包括答案和解析)

已知动直线与椭圆C: 交于P、Q两不同点,且△OPQ的面积=,其中O为坐标原点.

(Ⅰ)证明均为定值;

(Ⅱ)设线段PQ的中点为M,求的最大值;

(Ⅲ)椭圆C上是否存在点D,E,G,使得?若存在,判断△DEG的形状;若不存在,请说明理由.

查看答案和解析>>

设椭圆C:
x2
a2
+
y2
2
=1(a>0)
的左、右顶点分别为A、B,点P在椭圆上且异于A、B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为-
1
2
,求椭圆的离心率;
(2)对于由(1)得到的椭圆C,过点P的直线l交x轴于点Q(-1,0),交y轴于点M,若|
MP
|=2|
PQ
|
,求直线l的斜率.

查看答案和解析>>

设椭圆C:
x2
a2
+
y2
b2
=1
的右、右焦点分别为F1、F2,上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且2
F1F2
+
F2Q
=0.
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线x-
3
y-3=0相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2的直线交椭圆于M、N两点,点P(4,0),求△PMN面积的最大值.

查看答案和解析>>

精英家教网如图,椭圆C的中心在原点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线l与椭圆交于A,B两点,△MF1F2的面积为4,△ABF2的周长为8
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,如存在,求出P点坐标及圆的方程,如不存在,请说明理由.

查看答案和解析>>

(本小题满分14分)

已知动直线与椭圆C: 交于P、Q两不同点,且△OPQ的面积=,其中O为坐标原点.

(Ⅰ)证明均为定值;

(Ⅱ)设线段PQ的中点为M,求的最大值;

(Ⅲ)椭圆C上是否存在点D,E,G,使得?若存在,判断△DEG的形状;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案