题目列表(包括答案和解析)
设函数
,若
为函数
的一个极值点,则下列图象不可能为
的图象是
![]()
【答案】D
【解析】设
,∴
,
又∴
为
的一个极值点,
∴
,即
,
∴
,
当
时,
,即对称轴所在直线方程为
;
当
时,
,即对称轴所在直线方程应大于1或小于-1.
【答案】![]()
【解析】设
,有几何意义知
的最小值为
, 又因为存在实数x满足
,所以只要2大于等于f(x)的最小值即可.即
2,解得:
∈
,所以a的取值范围是
.故答案为:
.
如图,在正方体
中,
是棱
的中点,
在棱
上.
且
,若二面角
的余弦值为
,求实数
的值.
![]()
【解析】以A点为坐标原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,设正方体的棱长为4,分别求出平面C1PQ法向量和面C1PQ的一个法向量,然后求出两法向量的夹角,建立等量关系,即可求出参数λ的值.
![]()
设函数
.
(I)求
的单调区间;
(II)当0<a<2时,求函数
在区间
上的最小值.
【解析】第一问定义域为真数大于零,得到
.
.
令
,则
,所以
或
,得到结论。
第二问中,
(
).
.
因为0<a<2,所以
,
.令
可得
.
对参数讨论的得到最值。
所以函数
在
上为减函数,在
上为增函数.
(I)定义域为
. ………………………1分
.
令
,则
,所以
或
. ……………………3分
因为定义域为
,所以
.
令
,则
,所以
.
因为定义域为
,所以
. ………………………5分
所以函数的单调递增区间为
,
单调递减区间为
.
………………………7分
(II)
(
).
.
因为0<a<2,所以
,
.令
可得
.…………9分
所以函数
在
上为减函数,在
上为增函数.
①当
,即
时,
在区间
上,
在
上为减函数,在
上为增函数.
所以
. ………………………10分
②当
,即
时,
在区间
上为减函数.
所以
.
综上所述,当
时,
;
当
时,![]()
如图,直线
与抛物线
交于
两点,与
轴相交于点
,且
.
(1)求证:
点的坐标为
;
(2)求证:
;
(3)求
的面积的最小值.
![]()
【解析】设出点M的坐标
,并把过点M的方程设出来.为避免对斜率不存在的情况进行讨论,可以设其方程为
,然后与抛物线方程联立消x,根据
,即可建立关于
的方程.求出
的值.
(2)在第(1)问的基础上,证明:
即可.
(3)先建立面积S关于m的函数关系式,根据
建立即可,然后再考虑利用函数求最值的方法求最值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com