面即为面的法向量. 查看更多

 

题目列表(包括答案和解析)

动物中的数学“天才”

  蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成.组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料.蜂房的巢壁厚0.073毫米,误差极小.

  丹顶鹤总是成群结队迁飞,而且排成“人”字形.“人”字形的角度是110度.更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?

  蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案.

  冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少.

  真正的数学“天才”是珊瑚虫.珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条.奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”.天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天.

1.同学们,大自然中有许多有关数学的奥妙,许多现象有意无意地应用着数学,对于这些现象你有什么看法吗?请你谈谈你对大自然中的数学现象的认识.

2.把你发现的大自然中的数学问题告诉你的同学和老师,让他们也分享一下你认识大自然的乐趣.

查看答案和解析>>

请先阅读:

设平面向量=(a1,a2),=(b1,b2),且的夹角为è,

因为=||||cosè,

所以≤||||.

当且仅当è=0时,等号成立.

(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有成立;

(II)试求函数的最大值.

查看答案和解析>>

请先阅读:
设平面向量=(a1,a2),=(b1,b2),且的夹角为θ,
因为=||||cosθ,
所以≤||||.

当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)试求函数的最大值.

查看答案和解析>>

在空间中,“经过点P(x0,y0,z0),法向量为
e
=(A,B,C)
的平面的方程(即平面上任意一点的坐标(x,y,z)满足的关系)是:A(x-x0)+B(y-y0)+C(z-z0)=0”.如果给出平面α的方程是x-y+z=1,平面β的方程是
x
6
-
y
3
-
z
6
=1
,则由这两平面所成的二面角的正弦值是(  )
A、
7
3
B、
6
3
C、
78
9
D、
1
3

查看答案和解析>>

在空间中,“经过点P(x,y,z),法向量为的平面的方程(即平面上任意一点的坐标(x,y,z)满足的关系)是:A(x-x)+B(y-y)+C(z-z)=0”.如果给出平面α的方程是x-y+z=1,平面β的方程是,则由这两平面所成的二面角的正弦值是( )
A.
B.
C.
D.

查看答案和解析>>


同步练习册答案