1.A 2.B 3.B 4.D 5.A 6.B 7.A 8.B 9.A 查看更多

 

题目列表(包括答案和解析)

(理)某娱乐中心有如下摸奖活动:拿8个白球和8个黑球放在一盒中,规定:凡摸奖者,每人每次交费1元,每次从盒中摸出5个球,中奖情况为:摸出5个白球中20元,摸出4个白球1个黑球中2元,摸出3个白球2个黑球中价值为0.5元的纪念品1件,其他情况无任何奖励.若有1560人次摸奖,不计其他支出,用概率估计该中心收入钱数为(  )
A、120元B、480元C、980元D、148元

查看答案和解析>>

(理)已知f(x2+1)的定义域为x∈(-1,2),则f(2x-3)的定义域为(  )

查看答案和解析>>

(理)数列{an},若对任意的k∈N*,满足
a2k+1
a2k-1
=q1
a2k+2
a2k
=q2
 &(q1q2
是常数且不相等),则称数列{an}为“跳跃等比数列”,则下列关于“跳跃等比数列”的命题:
(1)若数列{an}为“跳跃等比数列”,则满足bk=a2k•a2k-1(k∈N*)的数列{bn}是等比数列; 
(2)若数列{an}为“跳跃等比数列”,则满足bk=
a2k
a2k-1
(k∈N*)
的数列{bn}是等比数列; 
(3)若数列{an}为等比数列,则数列{(-1)nan}是“跳跃等比数列”;  
(4)若数列{an}为等比数列,则满足bn=
ak+1ak
,&n=2k-1
ak+1
ak
,&n=2k
(k∈N*)
的数列{bn}是“跳跃等比数列”;
(5)若数列{an}和{bn}都是“跳跃等比数列”,则数列{an•bn}也是“跳跃等比数列”;其中正确的命题个数为(  )

查看答案和解析>>

(理)在(1+ax)7的展开式中,x3的系数是x2和x4的系数的等差中项,若实数a>1,那么a=
1+2
10
1+2
10

(文)某工程由下列工序组成,则工程总时数为
11
11
天.
工序 a b c d e f
紧前工序 - - a、b c c d、e
工时数(天) 2 3 2 5 4 1

查看答案和解析>>

(理)数列{an},若对任意的k∈N*,满足
a2k+1
a2k-1
=q1
a2k+2
a2k
=q2
 &(q1q2
是常数且不相等),则称数列{an}为“跳跃等比数列”,则下列关于“跳跃等比数列”的命题:
(1)若数列{an}为“跳跃等比数列”,则满足bk=a2k•a2k-1(k∈N*)的数列{bn}是等比数列; 
(2)若数列{an}为“跳跃等比数列”,则满足bk=
a2k
a2k-1
(k∈N*)
的数列{bn}是等比数列; 
(3)若数列{an}为等比数列,则数列{(-1)nan}是“跳跃等比数列”;  
(4)若数列{an}为等比数列,则满足bn=
ak+1ak
,&n=2k-1
ak+1
ak
,&n=2k
(k∈N*)
的数列{bn}是“跳跃等比数列”;
(5)若数列{an}和{bn}都是“跳跃等比数列”,则数列{an•bn}也是“跳跃等比数列”;其中正确的命题个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>


同步练习册答案