题目列表(包括答案和解析)
用数学归纳法证明:
.
【解析】首先证明当n=1时等式成立,再假设n=k时等式成立,得到等式
,
下面证明当n=k+1时等式左边
,
根据前面的假设化简即可得到结果,最后得到结论.
同理,当a、b都是正实数时,(a+b)(
+
)≥2ab·2
·
=4,可以推导出结论:对于n个正实数a1,a2,a3,…,an有(a1+a2+a3)(
+
+
)≥_______;(a1+a2+a3+a4)(
+
+
+
)≥________;(a1+a2+a3+…+an)(
+
+
+···
)≥________;
如果对于n个同号实数a1,a2,a3,…,an(同正或者同负),那么,根据上述结论,(a1+a2+a3+…+an)(
+
+
+···
)的取值范围是________.
已知基本不等式:
≥
(a、b都是正实数,当且仅当a=b时等号成立)可以推广到n个正实数的情况,即对于n个正实数a1,a2,a3,…,an,有
≥
(当且仅当a1=a2=a3=…=an时,取等号).
同理,当a、b都是正实数时,(a+b)(
+
)≥2ab·2
·
=4,可以推导出结论:对于n个正实数a1,a2,a3,…,an有(a1+a2+a3)(
+
+
)≥________;(a1+a2+a3+a4)(
+
+
+
)≥________;(a1+a2+a3+…+an)(
+
+
+…
)≥________;
如果对于n个同号实数a1,a2,a3,…,an(同正或者同负),那么,根据上述结论,(a1+a2+a3+…+an)(
+
+
+…
)的取值范围是________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com