题目列表(包括答案和解析)
已知函数
的最小值为0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若对任意的
有
≤
成立,求实数
的最小值;
(Ⅲ)证明
(
).
【解析】(1)解:
的定义域为![]()
![]()
由
,得![]()
当x变化时,
,
的变化情况如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
极小值 |
|
因此,
在
处取得最小值,故由题意
,所以![]()
(2)解:当
时,取
,有
,故
时不合题意.当
时,令
,即![]()
![]()
令
,得![]()
①当
时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当
时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故
不合题意.
综上,k的最小值为
.
(3)证明:当n=1时,不等式左边=
=右边,所以不等式成立.
当
时,![]()
![]()
![]()
在(2)中取
,得
,
从而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
综上,
,![]()
已知
是定义在
上的增函数,函数
的图像关于点
对称,若对于任意的
,不等式
恒成立,则当
时,
的取值范围是( )
A.(3,7) B.(9,25) C.(13,49) D.(9,49)
学习三角函数一章时,课堂上老师给出这样一个结论:当
时,有
恒成立,当老师把这个证明完成时,
(Ⅰ) 学生甲提出问题:能否在不等式
的左边增加一个量,使不等号的方向得以改变?
下面请同学们证明:若
,则
成立。
(Ⅱ) 当学生甲的问题完成时,学生乙提问:对于不等式
是否也有相似的结论?
下面请同学们探讨:若
,是否存在实数
,使
恒成立?如果存在,求出
的一个值;如果不存在,请说明理由.
学习三角函数一章时,课堂上老师给出这样一个结论:当
时,有
恒成立,当老师把这个证明完成时,
(Ⅰ) 学生甲提出问题:能否在不等式
的左边增加一个量,使不等号的方向得以改变?
下面请同学们证明:若
,则
成立。
(Ⅱ) 当学生甲的问题完成时,学生乙提问:对于不等式
是否也有相似的结论?
下面请同学们探讨:若
,是否存在实数
,使
恒成立?如果存在,求出
的一个值;如果不存在,请说明理由.
已知
是定义在
上的增函数,函数
的图像关于点
对称,若对于任意的
,不等式
恒成立,则当
时,
的取值范围是( )
A.(3,7) B.(9,25) C.(13,49) D.(9,49)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com