(Ⅱ)因为.所以其最大值为6.最小值为2-----10分D. 查看更多

 

题目列表(包括答案和解析)

(2012•盐城一模)在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形ABCD的三边AB、BC、CD由长6分米的材料弯折而成,BC边的长为2t分米(1≤t≤
3
2
);曲线AOD拟从以下两种曲线中选择一种:曲线C1是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为y=cosx-1),此时记门的最高点O到BC边的距离为h1(t);曲线C2是一段抛物线,其焦点到准线的距离为
9
8
,此时记门的最高点O到BC边的距离为h2(t).
(1)试分别求出函数h1(t)、h2(t)的表达式;
(2)要使得点O到BC边的距离最大,应选用哪一种曲线?此时,最大值是多少?

查看答案和解析>>

某市的老城区改造建筑用地平面示意图如图所示.经规划调研确定,老城区改造规划建筑用地区域可近似为半径是R的圆面.该圆的内接四边形ABCD是原老城区建筑用地,测量可知边界ABAD=4万米,BC=6万米,CD=2万米.

(I)请计算原老城区建筑用地ABCD的面积及圆面的半径R的值;

(II)因地理条件的限制,边界ADCD不能变更,而边界ABBC可以调整.为了提高老城区改造建筑用地的利用率,请在上设计一点P,使得老城区改造的新建筑用地APCD的面积最大,并求出其最大值.

 

 

 

查看答案和解析>>

某市的老城区改造建筑用地平面示意图如图所示.经规划调研确定,老城区改造规划建筑用地区域可近似为半径是R的圆面.该圆的内接四边形ABCD是原老城区建筑用地,测量可知边界ABAD=4万米,BC=6万米,CD=2万米.

(I)请计算原老城区建筑用地ABCD的面积及圆面的半径R的值;

(II)因地理条件的限制,边界ADCD不能变更,而边界ABBC可以调整.为了提高老城区改造建筑用地的利用率,请在上设计一点P,使得老城区改造的新建筑用地APCD的面积最大,并求出其最大值.

查看答案和解析>>

已知函数,(),

(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求a,b的值

(2)当时,若函数的单调区间,并求其在区间(-∞,-1)上的最大值。

【解析】(1) 

∵曲线与曲线在它们的交点(1,c)处具有公共切线

(2)令,当时,

,得

时,的情况如下:

x

+

0

-

0

+

 

 

所以函数的单调递增区间为,单调递减区间为

,即时,函数在区间上单调递增,在区间上的最大值为

,即时,函数在区间内单调递增,在区间上单调递减,在区间上的最大值为

,即a>6时,函数在区间内单调递赠,在区间内单调递减,在区间上单调递增。又因为

所以在区间上的最大值为

 

查看答案和解析>>

已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,为数列的前n项和.

(1)求数列的通项公式和数列的前n项和

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.

【解析】第一问利用在中,令n=1,n=2,

   即      

解得,, [

时,满足

第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

第三问

     若成等比数列,则

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

时,满足

(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

综合①、②可得的取值范围是

(3)

     若成等比数列,则

即.

,可得,即

,且m>1,所以m=2,此时n=12.

因此,当且仅当m=2, n=12时,数列中的成等比数列

 

查看答案和解析>>


同步练习册答案