题目列表(包括答案和解析)
(18) (本小题满分12分)数列
中,已知
,且
是1与![]()
的等差中项.(Ⅰ)求
;(Ⅱ)设
,记数列
的前
项和为
,证明:
.
(1)求点P的轨迹曲线C的方程;
(2)设曲线C与直线l:x+y=1相交于两个不同的点A、B,求曲线C的离心率e的取值范围;
(3)设曲线C与直线l:x+y=1相交于两个不同的点A、B,O为坐标原点,且
=-3,求a的值.
(文)(本小题满分12分)设函数f(x)=
x3+2ax2-3a2x+
a(0<a<1).
(1)求函数f(x)的单调区间;
(2)若当x∈[a,2]时,恒有f(x)≤0,试确定实数a的取值范围.
(本小题满分12分)
如图,已知椭圆C:
,经过椭圆C的右焦点F且斜率为k(k≠0)的直线
交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.是否存在k,使对任意m>0,总有
成立?若存在,求出所有k的值;
![]()
(本小题满分12分)
已知直线l:y=x,圆C1的圆心为(3,0),且经过(4,1)点.
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点A、B分别为圆C1、C2上任意一点,求|AB|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒
个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?
(本小题满分12分)
已知定点
,B是圆
(C为圆心)上的动点,AB的垂直平分线与BC交于点E。
(1)求动点E的轨迹方程;
(2)设直线
与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:
OPQ面积的最大值及此时直线
的方程。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com