本小题主要考查古典概型和复数的基本知识.满分12分 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,底面ABCD是矩形,,BC=1,,PD=CD=2.

(I)求异面直线PA与BC所成角的正切值;

(II)证明平面PDC⊥平面ABCD;

(III)求直线PB与平面ABCD所成角的正弦值。

【考点定位】本小题主要考查异面直线所成的角、平面与平面垂直、直线与平面所成的角等基础知识.,考查空间想象能力、运算求解能力和推理论证能力.

 

查看答案和解析>>

某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组。在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%。登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%。为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本。试确定

(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例;

(Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数。

本小题主要考查分层抽样的概念和运算,以及运用统计知识解决实际问题的能力。

查看答案和解析>>

已知函数其中a>0.

(I)求函数f(x)的单调区间;

(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;

(III)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值。

【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.

 

查看答案和解析>>

已知椭圆(a>b>0),点在椭圆上。

(I)求椭圆的离心率。

(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。

【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.

 

查看答案和解析>>

零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

(Ⅲ)求二面角B-EF-A的正切值。

查看答案和解析>>


同步练习册答案