如图.在四棱锥中.底面为正方形.且平面...分别是.的中点. 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥中,底面为正方形,且平面分别是的中点.

(Ⅰ)证明:EF∥平面PCD;

(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

如图,在四棱锥中,底面为正方形,侧棱底面,点的中点。

(Ⅰ)求证:平面

(Ⅱ)求点到平面的距离。

 

 

 

查看答案和解析>>

如图,在四棱锥中,底面为正方形,侧棱底面垂足为的中点.

(Ⅰ)证明:∥平面

(Ⅱ)证明:平面⊥平面.

 

 

 

查看答案和解析>>

如图,在四棱锥中,底面为正方形,
平面,已知为线段的中点.
(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

如图,在四棱锥中,底面为正方形,平面,已知为线段的中点.
(1)求证:平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

一、选择题

20080917

二、填空题

13.1    14.(-1,3)    15.5    16.②③④

三、解答题

17.解:(Ⅰ)

      ………………4分

  

  当   ……2分

(Ⅱ)  ………3分

  又

         ………………3分

18.解:(Ⅰ)乙在第3次独立地射时(每次射击相互独立)才首次命中10环的概率为

  

(Ⅱ)甲、乙两名运动员各自独立射击1次,两人中恰有一人命中10环的概率为

  

19.解:(Ⅰ)以D为坐标原点,DA所在的直线为x轴、DC所在的直线为y轴、DP所在的直线为z轴,建立如图所示的空间直角坐标系D-xyz.

  则A(1,0,0),B(1,1,0),C(0,1,0),

  P(0,0,1)

  

  

   (Ⅱ)

  

  

  

  

  

  解法二:

  设平面BCE的法向量为

  由

             ………………2分

  设平面FCE的法向量为

  由

  

       …………2分

20.(Ⅰ)由题意,得

  

   (Ⅱ)①当

  

②当

  令

  

21.解:(Ⅰ)设椭圆方程为

  由题意,得

所求椭圆方程;  ……………5分

(Ⅱ)设抛物线C的方程为.

  由.

  抛物线C的方程为

  

,设,则有

.

  

  代入直线

  

22.解:(Ⅰ)

  

(Ⅱ)记方程①:方程②:

  分别研究方程①和方程②的根的情况:

   (1)方程①有且仅有一个实数根方程①没有实数根

   (2)方程②有且仅有两个不相同的实数根,即方程有两个不相同的非正实数根.

  

  方程②有且仅有一个不相同的实数根,即方程有且仅有一个蜚 正实数根.

  

  综上可知:当方程有三个不相同的实数根时,

  当方程有且仅有两个不相同的实数根时,

  符合题意的实数取值的集合为