④的最大值是1, 其中所有正确命题的序号为 . 查看更多

 

题目列表(包括答案和解析)

给出以下命题:
①函数既无最大值也无最小值;
②函数f(x)=|x2-2x-3|的图象关于直线x=1对称;
③若函数f(x)的定义域为(0,1),则函数f(x2)的定义域为(-1,1);
④若函数f(x)满足|f(-x)|=|f(x)|,则函数f(x)或是奇函数或是偶函数;
⑤设f(x)与g(x)是定义在R上的两个函数,若对任意x1,x2∈R(x1≠x2)有|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,且函数f(x)在R上递增,则函数h(x)=f(x)-g(x)在R上递增.
其中正确的命题是    (写出所有真命题的序号)

查看答案和解析>>

给出以下命题:
①函数既无最大值也无最小值;
②函数f(x)=|x2-2x-3|的图象关于直线x=1对称;
③若函数f(x)的定义域为(0,1),则函数f(x2)的定义域为(-1,1);
④若函数f(x)满足|f(-x)|=|f(x)|,则函数f(x)或是奇函数或是偶函数;
⑤设f(x)与g(x)是定义在R上的两个函数,若对任意x1,x2∈R(x1≠x2)有|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,且函数f(x)在R上递增,则函数h(x)=f(x)-g(x)在R上递增.
其中正确的命题是    (写出所有真命题的序号)

查看答案和解析>>

给出以下命题:
①函数f(x)=|log2x2|既无最大值也无最小值;
②函数f(x)=|x2-2x-3|的图象关于直线x=1对称;
③若函数f(x)的定义域为(0,1),则函数f(x2)的定义域为(-1,1);
④若函数f(x)满足|f(-x)|=|f(x)|,则函数f(x)或是奇函数或是偶函数;
⑤设f(x)与g(x)是定义在R上的两个函数,若对任意x1,x2∈R(x1≠x2)有|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,且函数f(x)在R上递增,则函数h(x)=f(x)-g(x)在R上递增.
其中正确的命题是______(写出所有真命题的序号)

查看答案和解析>>

给出以下命题:
①函数f(x)=||既无最大值也无最小值;
②函数f(x)=|x2-2x-3|的图象关于直线x=1对称;
③向量与向量共线,则A,B,C,D四点共线;
④若函数f(x)满足|f(-x)|=|f(x)|,则函数f(x)或是奇函数或是偶函数;
⑤设定义在R上的函数f(x)满足对任意x1,x2∈R,x1<x2有f(x1)-f(x2)<x1-x2恒成立,则函数F(x)=f(x)-x在R上递增.
其中正确的命题是    (写出所有真命题的序号)

查看答案和解析>>

给出以下命题:

①函数f(x)=|log2x2|既无最大值也无最小值;

②函数f(x)=|x2-2x-3|的图象关于直线x=1对称;

③若函数f(x)的定义域为(0,1),则函数f(x2)的定义域为(-1,1);

④若函数f(x)满足|f(-x)|=|f(x)|,则函数f(x)或是奇函数或是偶函数;

⑤设f(x)与g(x)是定义在R上的两个函数,若对任意x1,x2∈R(x1≠x2)有|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,且函数f(x)在R上递增,则函数h(x)=f(x)-g(x)在R上递增.

其中正确的命题是________(写出所有真命题的序号)

查看答案和解析>>

一、选择题(本大题共有8个小题,每小题5分,共40分;在每个小题给出的四个选项中有且仅有一个符合题目要求的)

题号

1

2

3

4

5

6

7

8

答案

B

D

C

C

B

A

C

B

二、填空题(本大题共有6个小题,每小题5分,共30分;请把答案填在相应的位置)

题号

9

10

11

12

13

14

答案

-1+

8,70

24

①③④

三、解答题(本大题共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤)

15.(本题满分13分)

    解:(1)

           

           

       (2)由题意,得

           

16.(本题满分13分)

    解:(1)这3封信分别被投进3个信箱的概率为

           

       (2)恰有2个信箱没有信的概率为

           

       (3)设信箱中的信箱数为

                    

                    

0

1

2

3

17.(本题满分13分)

    解:解答一:(1)在菱形中,连接是等边三角形。

                  

(2)

                  

                  

              (3)取中点,连结

                  

     解法二:(1)同解法一;

            (2)过点平行线交,以点为坐标原点,建立如图的坐标系

                  

                   二面角的大小为

              (3)由已知,可得点

                  

                   即异面直线所成角的余弦值为

18.(本题满分13分)

解:(1)将函数的图象向右平移一个单位,得到函数的图象,

        函数的图象关于点(0,0)对称,即函数是奇函数,

       

       

        由题意得:

        所以

   (2)由(1)可得

        故设所求两点为

       

        满足条件的两点的坐标为:

(3)

       

       

19.(本题满分14分)

解:(1)椭圆的右焦点的坐标为(1,0),

       

(2)

      

  (3)由(2)知

      

20.(本题满分14分)

解:(1)

           

       (2)由(1)知

           

       (3)

           

 

 


同步练习册答案