题目列表(包括答案和解析)
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-
的距离为
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用
,设出点A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在椭圆
+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-
的距离为
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为
+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知![]()
,![]()
∴
……6分
∵A、B在椭圆
+y2=1上,
∴
……10分
∴l的斜率为
=
.
∴l的方程为y=
(x-
),即
x-y-
=0.
已知双曲线G的中心在原点,它的渐近线与圆
相切,过点P(-4,0)作斜率为
的直线l,使得l和G交于A、B两点,和y轴交于点C,并且点P在线段AB上,又满足![]()
(1)求双曲线G的渐近线方程
(2)求双曲线G的方程
(3)椭圆S的中心在原点,它的短轴是G的实轴,如果S中垂直于l的平行弦的中点轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程。
根据下列条件写出直线的方程:
(1)斜率是
,经过点A(8,-2);
(2)过点B(-2,0),且与x轴垂直;
(3)斜率为-4,在y轴上截距为7;
(4)经过两点A(-1,8),B(4,-2);
(5)在y轴上截距是2,且与x轴平行。
(1)斜率是
,经过点A(8,-2);
(2)过点B(-2,0),且与x轴垂直;
(3)斜率为-4,在y轴上截距为7;
(4)经过两点A(-1,8),B(4,-2);
(5)在y轴上截距是2,且与x轴平行。
1―5、 CDDCA 6―10、DABAB 11、
12、1, 9
13解:因为方程x 2 + mx + 1=0有两个不相等的实根,
所以Δ1=m 2 ? 4>0, ∴m>2或m < ? 2
又因为不等式4x 2 +4(m ? 2)x + 1>0的解集为R,
所以Δ2=16(m ? 2) 2? 16<0, ∴1< m <3
因为p或q为真,p且q为假,所以p与q为一真一假,
(1)当p为真q为假时,
(2)当p为假q为真时,
综上所述得:m的取值范围是
或
14、解:
直线方程为y=-x+4,联立方程
,消去y得,
.
设A(
),B(
),得
所以:
,
由已知
可得
+
=0,从而16-8p=0,得p=2.
所以抛物线方程为y2=4x,焦点坐标为F(1,0)
15、解(Ⅰ) AC与PB所成角的余弦值为
.
(Ⅱ)N点到AB、AP的距离分别为1,
.
16解: (1)
; (2)略
17、6 18、①②③⑤ 19、B 20、B
21、解:(1)略 (2)
22、解:(1)设双曲线C的渐近线方程为y=kx,则kx-y=0
∵该直线与圆
相切,∴双曲线C的两条渐近线方程为y=±x.
故设双曲线C的方程为
.又双曲线C的一个焦点为
,
∴
,
∴双曲线C的方程为:
.
(2)由
得
.令
∵直线与双曲线左支交于两点,等价于方程f(x)=0在
上有两个
不等负实根.
因此
,解得
..
(3). ∵ AB中点为
,
∴直线l的方程为:
.
令x=0,得
.
∵
,∴
,∴
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com