(1)若.求过点(2.)的直线方程, 查看更多

 

题目列表(包括答案和解析)

过点(1,0)直线l交抛物线y2=4x于A(x1,y1),B(x2,y2)两点,抛物线的顶点是O.
(ⅰ)证明:数学公式为定值;
(ⅱ)若AB中点横坐标为2,求AB的长度及l的方程.

查看答案和解析>>

过点(1,0)直线l交抛物线y2=4x于A(x1,y1),B(x2,y2)两点,抛物线的顶点是O.
(ⅰ)证明:为定值;
(ⅱ)若AB中点横坐标为2,求AB的长度及l的方程.

查看答案和解析>>

过点A(-4,0)向椭圆
x2
a2
+
y2
b2
=1(a>b>0)
引两条切线,切点分别为B,C,且△ABC为正三角形.
(Ⅰ)求ab最大时椭圆的方程;
(Ⅱ)对(Ⅰ)中的椭圆,若其左焦点为F,过F的直线l与y轴交于点M,与椭圆的一个交点为Q,且|
MQ
|=2|
QF
|
,求直线l的方程.

查看答案和解析>>

已知直线方程为(2+m)x+(1-2m)y+4-3m=0.
(Ⅰ)证明:直线恒过定点M;
(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线的方程.

查看答案和解析>>

过点M(3,0)作直线l与圆x2+y2=25交于A、B两点.
(1)若点P是线段AB的中点,求点P的轨迹方程;
(2)求直线l的倾斜角为何值时△AOB的面积最大,并求这个最大值.

查看答案和解析>>

一、选择题:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

20080522

 

二、填空题:

13.13   14.   15.       16.②③

三、解答题:

 17.解:(1) f()=sin(2-)+1-cos2(-)

          = 2[sin2(-)- cos2(-)]+1

         =2sin[2(-)-]+1

         = 2sin(2x-) +1  …………………………………………5分

∴ T==π…………………………………………7分

  (2)当f(x)取最大值时, sin(2x-)=1,有  2x- =2kπ+ ……………10分

=kπ+    (kZ) …………………………………………11分

∴所求的集合为{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

 

18.解:(1) :当时,,…………………………………………1分

时,.

……………………………………………………………………………………3分

是等差数列,

??????????…………………………………………5?分

 (2)解:, .…………………………………………7分

,, ……………………………………8分

??????????…………………………………………??9分

.

,,即是等比数列. ………………………11分

所以数列的前项和.………………………12分

19.解(1)∵函数的图象的对称轴为

要使在区间上为增函数,

当且仅当>0且……………………2分

=1则=-1,

=2则=-1,1

=3则=-1,1,;………………4分

∴事件包含基本事件的个数是1+2+2=5

∴所求事件的概率为………………6分

(2)由(1)知当且仅当>0时,

函数上为增函数,

依条件可知试验的全部结果所构成的区域为

构成所求事件的区域为三角形部分。………………8分

………………10分

∴所求事件的概率为………………12分

20解:(1):作,连

的中点,连,

则有……………………………4分

…………………………6分

(2)设为所求的点,作,连.则………7分

就是与面所成的角,则.……8分

,易得

……………………………………10分

解得………11分

故线段上存在点,且时,与面角. …………12分

 

21.解(1)由

    

过点(2,)的直线方程为,即

   (2)由

在其定义域(0,+)上单调递增。

只需恒成立

①由上恒成立

,∴,∴,∴…………………………10分

综上k的取值范围为………………12分

22.解:(1)由题意椭圆的离心率

∴椭圆方程为………………3分

又点(1,)在椭圆上,∴=1

∴椭圆的方程为………………6分

   (2)若直线斜率不存在,显然不合题意;

则直线l的斜率存在。……………………7分

设直线,直线l和椭交于

依题意:………………………………9分

由韦达定理可知:………………10分

从而………………13分

求得符合

故所求直线MN的方程为:………………14分