3.函数在上是.A.单调增函数 B.单调减函数 查看更多

 

题目列表(包括答案和解析)

函数f(x)=
ax+b
x2+1
是定义在(-∞,+∞)上的奇函数,且f(
1
2
)=
2
5

(1)求实数a,b,并确定函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)写出f(x)的单调减区间,并判断f(x)有无最大值或最小值?如有,写出最大值或最小值.(不需说明理由)

查看答案和解析>>

函数f(x)是R上的偶函数,且在[0,+∞)上单调递增,则下列各式成立的是(  )

查看答案和解析>>

函数y=ax+1在R上是单调递减的,则函数g(x)=a(x2-4x+3)的增区间是(  )

查看答案和解析>>

函数y=xlnx在区间(0,1)上是(  )

查看答案和解析>>

函数f(x)=ax3+(a-1)x2+48(a-2)x+b的图象关于原点成中心对称,则f(x)在[-4,4]上的单调性是(  )

查看答案和解析>>

一、选择题:

1C  2.D  3.D  4.C  5. B  6.C   7. C   8.C  9.  A 

1,3,5

二、填空:

13..y=54.8(1+x%)16   14.(0,)  15.   16.

三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤。

17.解(1)

(2)

1,3,5

18.解:(1)当时.…………2分

,连.

⊥面,知⊥面.…………3分

中点时,中点.

∵△为正三角形,

,∴…………5分

…………6分

   (2)过,连结,则

∴∠为二面角P―AC―B的平面角,

…………8分

    …………10分

……12分

19.解:(1)fx)=-a2x2+c+,……………(1分)

a,∴∈(0,1,………………………………………(2分)

x∈(0,1时,[fx)]max=c+,……………………………(3分)

fx)≤1,则[fx)]max=c+≤1,即c,……………(5分)

∴对任意x∈[0,1],总有fx)≤1成立时,可得c.……(6分)

(2)∵a,∴>0………………………(7分)

又抛物线开口向下,fx)=0的两根在[0,内,…………(8分)

…………(11分)

 

所求实数c的取值范围为

20.解:(1)当时,,不成等差数列。…(1分)

时,  ,

,  ∴,∴ …………(4分)

…………………….5分

(2)………………(6分)

……………………(7分)

………(8分)

,∴……………(10分)

 ∴的最小值为……………….12分

21.解:(1)

……………………2分

是增函数

是减函数……………………4分

……6分

(2)因为,所以

……………………8分

所以的图象在上有公共点,等价于…………10分

解得…………………12分

22解:(1)由题意:∵|PA|=|PB|且|PB|+|PF|=r=8

∴|PA|+|PF|=8>|AF|

∴P点轨迹为以A、F为焦点的椭圆…………………………3分

设方程为

………………………5分

(2)假设存在满足题意的直线l,其斜率存在,设为k,设