9.若.B.C.且A<B<C (C).则下列结论正确的是 (A)sinA<sinC (B) cosA<cosC (C) tanA<tanC (D) 以上结论都不对 查看更多

 

题目列表(包括答案和解析)

三角形ABC中,三个内角A、B、C的对边分别为a,b,c,若a2+c2=b2+ac,且a:c=(
3
+1):2
,则角C=
45°
45°

查看答案和解析>>

已知数列{an},首项a1=-1,它的前n项和为Sn,若
OB
=an+1
OA
-an
OC
,且A,B,C三点共线(该直线不过原点O),则S10=
35
35

查看答案和解析>>

在△ABC中,角A,B,C的对边分别为a,b,c,且sin2A=sin(
π
3
+B)sin(
π
3
-B)+sin2B

(1)求角A的大小;
(2)若△ABC为锐角三角形,且a=2
5
,求△ABC面积的最大值.

查看答案和解析>>

(2012•淮北一模)在△ABC中,角A,B,C所对的边分别为a,b,c,角A,B,C依次成等差数列.
(1)若sin2B-sinAsinC,试判断△ABC的形状;
(2)若△ABC为钝角三角形,且a>c,试求sin2
C
2
+
3
sin
A
2
cos
A
2
-
1
2
的取值范围.

查看答案和解析>>

已知
a
=(2+sinx,1),
b
=(2,-2),
c
=(sinx-3,1),
d
=(1,k)
,(x∈R,k∈R)
(Ⅰ)若x∈[-
π
2
π
2
]
,且
a
∥(
b
+
c
),求x的值;
(Ⅱ)若(
a
+
d
)∥(
b
+
c
)
,求实数k的取值范围.

查看答案和解析>>

一、选择题:本小题共10小题,每小题5分,共50分.

题号

1

2

3

4

5

6

7

8

9

10

答案

B

D

B

C

A

C

B

B

A

A

二、填空题:本小题11―13题必答, 14、15小题中选答1题,若全答只计14题得分,共20分.

11.  35             12.            13. 

14.                15.    

三、解答题:共80分.

16题(本题满分13分)

解:(1)要使f(x)有意义,必须,即

得f(x)的定义域为………………………………7分

  (2)因f(x)的定义域为,关于原点不对称,所以

f(x)为非奇非偶函数. ……………………………………………13分

17题(本题满分13分)

解:(1)当且仅当时,方程组有唯一解.因的可能情况为三种情况………………………………3分

        而先后两次投掷骰子的总事件数是36种,所以方程组有唯一解的概率

        ……………………………………………………………………6分

(2)因为方程组只有正数解,所以两直线的交点在第一象限,由它们的图像可知

          ………………………………………………………………9分

解得(a,b)可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),所以方程组只有正数解的概率………………………………………………………………………13分

 

18题(本题满分14分)

(1)    证明:由题设知,FG=GA,FH=HD

             所以GH.

             又BC,故GHBC

             所以四边形BCHG是平等四边形。……………………4分

(2)    C、D、F、E四点共面。理由如下:

由BE,G是FA的中点知,

BEGF,所以EF//BG。……………………6分

由(1)知BG//CH,故EF//CH,故F、E、C、H共面,又点D在直线FH上,

所以C、D、F、E四点共面。……………………8分

(3)    证明:连结EG,由AB=BE,BEAG,及,知ABEG是正方形,

             故BG⊥EA。由题设知,FA、AD、AB两两垂直,故AD⊥平面FABE,因此AD⊥BG,又EA∩AD=A,所以BG⊥平面ADE。

             由(1)知,CH//BG,所以CH⊥平面ADE,由(2)知H平面CDE,故CH平面CDE,得平面ADE⊥平面CDE。……………………14分

 

19题(本题满分14分)

解:(1)由已知得,解得:……………………4分

所求椭圆方程为………………………………………………6分

(2)因点即A(3,0),设直线PQ方程为………………8分

则由方程组,消去y得:

设点……………………11分

,得

,代入上式得

,故

解得:,所求直线PQ方程为……………………14分

20题(本题满分14分)

解:(1)函数f(x)的定义域为…………2分

①当时,>0,f(x)在上递增.………………………………4分

②当时,令解得:

,因(舍去),故在<0,f(x)递减;在上,>0,f(x)递增.……………8分

(2)由(1)知内递减,在内递增.

……………………………………11分

,又因

,得………………14分

21题(本题满分12分)

解:(1)由,可得

………………………………3分

所以是首项为0,公差为1的等差数列.

所以……………………6分

(2)解:设……①

……②

时,①②得

…………9分

这时数列的前n项和

时,,这时数列的前n项和

…………………………………………12分

 

 

 

 


同步练习册答案