方法二:先求出二面角一个面内一点到另一个面的距离及到棱的距离.然后通过解直角三角形求角.如图:已知二面角α-l-β.在α内取一点P. 过P作PO⊥β.及PA⊥l,连AO.则AO⊥l成立.∠PAO就是二面角的平面角 查看更多

 

题目列表(包括答案和解析)

(2012•泉州模拟)某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCD-EFGH材料切割成三棱锥H-ACF.

(Ⅰ)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;
(Ⅱ)已知原长方体材料中,AB=2m,AD=3m,DH=1m,根据艺术品加工需要,工程师必须求出该三棱锥的高.
(i) 甲工程师先求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H-ACF的高.请你根据甲工程师的思路,求该三棱锥的高.
(ii)乙工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t的值是多少?(请直接写出t的值,不要求写出演算或推证的过程).

查看答案和解析>>

(2009•台州二模)如图,在三棱柱ABC-A1B1C1中,AB⊥AC,顶点A1在底面ABC上的射影恰为B点,且AB=AC=A1B=2.
(Ⅰ)分别求出AA1与底面ABC,棱BC所成的角;
(Ⅱ)在棱B1C1上确定一点P,使AP=
14
,并求出二面角P-AB-A1的平面角的余弦值.

查看答案和解析>>

如图是一个方形迷宫,甲、乙两人分别位于迷宫的A、B两处,两人同时以每一分钟一格的速度向东、西、南、北四个方向行走,已知甲向东、西行走的概率都为
1
4
,向南、北行走的概率为
1
3
和p,乙向东、西、南、北四个方向行走的概率均为q
(1)p和q的值;
(2)问最少几分钟,甲、乙二人相遇?并求出最短时间内可以相遇的概率.

查看答案和解析>>

如图是一个方形迷宫,甲、乙两人分别位于迷宫的两处,两人同时以每一分钟一格的速度向东、西、南、北四个方向行走,已知甲向东、西行走的概率都为,向南、北行走的概率为,乙向东、西、南、北四个方向行走的概率均为

⑴求的值;

⑵问最少几分钟,甲、乙二人相遇?并求出最短时间内可以相遇的概率。

 

 

查看答案和解析>>

已知关于x的方程(1-a)x2+(a+2)x-4=0,a∈R,求:?

(1)方程有两个正根的充要条件;

(2)方程至少有一个正根的充要条件.?

思路分析:先求出方程有两个实根的充要条件,再讨论x2的系数及运用根与系数的关系分别求出要求的充要条件.

查看答案和解析>>


同步练习册答案