3.已知数列{}的通项公式是,若对于m.都有成立.则实数k的取值范围是 A.k > 0 B.k > - 1 C.k > - 2 D.k > - 3 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的通项公式是an=n2+kn+2,若对于m∈N*,都有an+1>an成立,则实数k的取值范围是

[  ]

A.k>0

B.k>-1

C.k>-2

D.k>-3

查看答案和解析>>

设等比数列{an}的前n项和为Sn,已知数学公式
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

设等比数列{an}的前n项和为Sn,已知
(1)求数列{an}的通项公式;
(2)在an与a n+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

在数列,已知

   (1)记,求证:数列是等差数列;

   (2)求数列的通项公式;

   (3)对于任意给定的正整数k,是否存在,使得若存在,求出m的值;若不存在,请说明理由。

查看答案和解析>>

已知数列的前项和为,且满足,其中常数

(1)若,求数列的通项公式;

(2)对于(1)中数列,若数列满足),在 之间插入)个2,得到一个新的数列,试问:是否存在正整数m,使得数列 的前m项的和?如果存在,求出m的值;如果不存在,说明理由.

查看答案和解析>>

 

1-15CBDAC CDB   0   5   100  [3.9]   垂直  2或8  

16.⑴ ∵ ,……………………………… 2分

又∵ ,∴ 为斜三角形,

,∴.   ……………………………………………………………… 4分

,∴ .  …………………………………………………… 6分

⑵∵,∴ …10分

,∵,∴.…………………………………12分

 

17.(Ⅰ)从4名运动员中任取两名,其靶位号与参赛号相同,有种方法,另2名运动员靶位号与参赛号均不相同的方法有1种,所以恰有一名运动员所抽靶位号与参赛号相同的概率为  ……………………………4

   (Ⅱ)①由表可知,两人各射击一次,都未击中9环的概率为P=(1-0.3)(1-0.32)=0.476至少有一人命中9环的概率为p=1-0.476=0.524………………………8分

   

所以2号射箭运动员的射箭水平高…………………………………12分

 

18.证明:(Ⅰ)在梯形ABCD中,∵

∴四边形ABCD是等腰梯形,

,∴

又∵平面平面ABCD,交线为AC,∴平面ACFE…………………6分

(Ⅱ)取EF中点G,EB中点H,连结DG、GH、DH,∵DE=DF,∴平面ACFE,∴  又∵,∴又∵,∴

是二面角B―EF―D的平面角.

在△BDE中

∴在△DGH中,

由余弦定理得即二面角B―EF―D的大小余弦值...14分

 

 

19.解:(1)由椭圆定义可得,可得

  

,,解得   (4分)

(或解:以为直径的圆必与椭圆有交点,即

   (2)由,得

解得    

    此时

当且仅当m=2时, (9分)

(3)由

设A,B两点的坐标分别为,中点Q的坐标为

,两式相减得

     ①

且在椭圆内的部分

又由可知

    ②

①②两式联立可求得点Q的坐标为

点Q必在椭圆内

 又             (14分)

 

20.解:(1)

……………………………4分

(2)

由此猜测

下面证明:当时,由

时,

时,

总之在(-                (10分)

所以当时,在(-1,0)上有唯一实数解,从而

上有唯一实数解。

综上可知,.                 (14分)

 

21.解:(1)令

   令

   由①②得           (6分)

  (2)由(1)可得

n     

   

      ………………14

 

 


同步练习册答案