(2)若过D.E的抛物线与轴相交于.求抛物线的解析式和对称轴方程. 查看更多

 

题目列表(包括答案和解析)

23、抛物线y=ax2+2x+3(a<0)交x轴于A,B两点,交y轴于点C,顶点为D,而且经过点(2,3).
(1)写出抛物线的解析式及C、D两点的坐标;
(2)连接BC,以BC为边向右作正方形BCEF,求E、F两点的坐标;若将此抛物线沿其对称轴向上平移,试判断平移后的抛物线是否会同时经过正方形BCEF的两个顶点E、F;若能,写出平移后的抛物线解析式,若不能,请说明理由;
(3)若P是抛物线y=ax2+2x+3上任意一点,过点P作直线垂直于抛物线y=ax2+2x+3的对称轴,垂足为Q,那么是否存在着这样的点P,使以P、Q、D为顶点的三角形与△BOC相似?若存在,请求出P点的坐标;若不能,请说明理由.

查看答案和解析>>

抛物线y=ax2+2x+3(a<0)交x轴于A、B两点,交y轴于点C,顶点为D.
(1)写出抛物线的对称轴及C、D两点的坐标(用含a的代数式表示);
(2)连接BD并以BD为直径作⊙M,当a=-1时,请判断⊙M是否经过点C,并说明理由;
(3)在(2)题的条件下,点P是抛物线上任意一点,过P作直线垂直于对称轴,垂足为Q.那么是否存在这样的点P,使△PQD与以B、C、D为顶点的三角形相似?若存在,请求出点P的坐标;若不存在,请说明理由.精英家教网

查看答案和解析>>

抛物线y=ax2+2x+3(a<0)交x轴于A,B两点,交y轴于点C,顶点为D,而且经过点(2,3).
(1)写出抛物线的解析式及C、D两点的坐标;
(2)连接BC,以BC为边向右作正方形BCEF,求E、F两点的坐标;若将此抛物线沿其对称轴向上平移,试判断平移后的抛物线是否会同时经过正方形BCEF的两个顶点E、F?若能,写出平移后的抛物线解析式;若不能,请说明理由;
(3)若P是抛物线y=ax2+2x+3上任意一点,过点P作直线垂直于抛物线y=ax2+2x+3的对称轴,垂足为Q,那么是否存在着这样的点P,使以P、Q、D为顶点的三角形与△BOC相似?若存在,请求出P点的坐标;若不能,请说明理由.

查看答案和解析>>

抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x-7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQOC的面积为S.求S与t之间的函数关系式及自变量t的取值范围.
(3)对于二次三项式x2-10x+36,小明同学作出如下结论:无论x取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.

查看答案和解析>>

抛物线轴于两点,交轴于点,顶点为.

1.写出抛物线的对称轴及两点的坐标(用含的代数式表示)

2.连接并以为直径作⊙,当时,请判断⊙是否经过点,并说明理由;

3.在(2)题的条件下,点是抛物线上任意一点,过作直线垂直于对称轴,垂足为. 那么是否存在这样的点,使△与以为顶点的三角形相似?若存在,请求出点的坐标;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案