题目列表(包括答案和解析)
| • |
| 7 |
| • |
| 7 |
| • |
| 7 |
| • |
| 7 |
| • |
| 7 |
| • |
| 7 |
| 7 |
| 9 |
| • |
| 7 |
| 7 |
| 9 |
| • |
| 4 |
| 4 |
| 9 |
| 4 |
| 9 |
| • |
| 7 |
| • |
| 3 |
| • |
| 2 |
任何无限循环小数都可以化作分数的形式,例如:
如果规定:0.111……记作
,0.234234234……记作
,0.2343434……记作![]()
求证:![]()
证明:设0.111111……=
,则10×0.111111……=![]()
即1.11111……=
,1+0.1111……=![]()
∴
,得
,∴
,即![]()
(1)试比较0.9999……与1的大小,并说明理由
(2)把以下小数化作分数
= ,
= ,
= 。
(本题满分10分)已知二次函数
的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物
线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于
边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的
任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即
这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是
否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是
否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等
(即这四条线段能构成平行四边形)?请说明理由.
![]()
(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物
线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于
边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的
任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即
这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是
否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是
否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等
(即这四条线段能构成平行四边形)?请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com