6.如上图.给出了过直线外一点作已知直线的平行线的方法.其依据是 (A)两直线平行.同位角相等 (B)同位角相等.两直线平行(C)内错角相等.两直线平行 (D)同旁内角互补.两直线平行 查看更多

 

题目列表(包括答案和解析)

23、我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)除了正方形外,写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:
矩形、直角梯形

(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB,并写出点M的坐标;
(3)如图2,以△ABC的边AB,AC为边,向三角形外作正方形ABDE及ACFG,连接CE,BG相交于O点,P是线段DE上任意一点.求证:四边形OBPE是勾股四边形.

查看答案和解析>>

已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作CD⊥AB于点D.
(1)当点E为DB上任意一点(点D、B除外)时,连接CE并延长交⊙O于点F,AF与CD的延长线交于点G(如图①).
求证:AC2=AG•AF.
(2)李明证明(1)的结论后,又作了以下探究:当点E为AD上任意一点(点A、D除外)时,连接CE并延长交⊙O于点F,连接AF并延长与CD的延长线在圆外交于点G,CG与⊙O相交于点H(如图②).连接FH后,他惊奇地发现∠GFH=∠AFC.根据这一条件,可证GF•GA=GH•GC.请你帮李明给出证明.
(3)当点E为AB的延长线上或反向延长线上任意一点(点A、B除外)时,如图③、④所示,还有许多结论成立.请你根据图③或图④再写出两个类似问题(1)、(2)的结论(两角、两弧、精英家教网两线段相等或不相等的关系除外)(不要求证明).

查看答案和解析>>

已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作CD⊥AB于点D.
(1)当点E为DB上任意一点(点D、B除外)时,连接CE并延长交⊙O于点F,AF与CD的延长线交于点G(如图①).
求证:AC2=AG•AF.
(2)李明证明(1)的结论后,又作了以下探究:当点E为AD上任意一点(点A、D除外)时,连接CE并延长交⊙O于点F,连接AF并延长与CD的延长线在圆外交于点G,CG与⊙O相交于点H(如图②).连接FH后,他惊奇地发现∠GFH=∠AFC.根据这一条件,可证GF•GA=GH•GC.请你帮李明给出证明.
(3)当点E为AB的延长线上或反向延长线上任意一点(点A、B除外)时,如图③、④所示,还有许多结论成立.请你根据图③或图④再写出两个类似问题(1)、(2)的结论(两角、两弧、两线段相等或不相等的关系除外)(不要求证明).

查看答案和解析>>

已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作CD⊥AB于点D。
(1)当点E为DB上任意一点(点D、B除外)时,连接CE并延长交⊙O于点F,AF与CD的延长线交于点G(如图①),求证:AC2=AG·AF;
(2)李明证明(1)的结论后,又作了以下探究:当点E为AD上任意一点(点A、D除外)时,连接CE并延长交⊙O于点F,连接AF并延长与CD的延长线在圆外交于点G,CG与⊙O相交于点H(如图②),连接FH后,他惊奇的发现∠GFH=∠AFC,根据这一条件,可证GF·GA=GH·GC,请你帮李明给出证明;
(3)当点E为AB的延长线上或反向延长线上任意一点(点A、B除外)时,如图③、④所示,还有许多结论成立,请你根据图③或图④再写出两个类似问题(1)、(2)的结论(两角、两弧、两线段相等或不相等的关系除外)(不要求证明)。

图1                             图2                                图3                             图4

查看答案和解析>>

已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点CCDAB于点D

(1)当点EDB上任意一点(点DB除外)时,连接CE并延长交⊙O于点FAFCD的延长线交于点G(如图①).求证:AC2AG·AF

(2)李明证明(1)的结论后,又作了以下探究:当点EAD上任意一点(点AD除外)时,连接CE并延长交⊙O于点F,连接AF并延长与CD的延长线在圆外交于点GCG与⊙O相交于点H(如图②).连接FH后,他惊奇的发现∠GFH=∠AFC.根据这一条件,可证GF·GAGH·GC.请你帮李明给出证明.

(3)当点EAB的延长线上或反向延长线上任意一点(点AB除外)时,如图③、④所示,还有许多结论成立.请你根据图③或图④再写出两个类似问题(1)、(2)的结论(两角、两弧、两线段相等或不相等的关系除外)(不要求证明).

查看答案和解析>>


同步练习册答案