③直接利用②中的规律计算的结果. 查看更多

 

题目列表(包括答案和解析)

我国古籍《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究两类特殊的勾股数.
(1)通过观察完成下面两个表格中的空格(以下a、b、c为Rt△ABC的三边,且a<b<c):

(2)我们发现,表一中a为大于l的奇数,此时b、c的数量关系是
b+1=c
b+1=c
;表二中a为大于4的偶数,此时b、c的数量关系是
b+2=c
b+2=c

(3)一般地,对于表一,用含a的代数式表示b=
a2-1
2
a2-1
2
;对于表二,用含a的代数式表示b=
a2
4
-1
a2
4
-1

(4)我们还发现,表一中的三边长“3,4,5”与表二中的“6,8,10”成倍数关系,表一中的“5,l2,13”与表二中的“10,24,26”恰好也成倍数关系….请直接利用这一规律计算:在Rt△ABC中,当a=
3
5
,b=
4
5
时,斜边c的值.

查看答案和解析>>

我国古籍《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究两类特殊的勾股数.
(1)通过观察完成下面两个表格中的空格(以下a、b、c为Rt△ABC的三边,且a<b<c):
作业宝
(2)我们发现,表一中a为大于l的奇数,此时b、c的数量关系是______;表二中a为大于4的偶数,此时b、c的数量关系是______;
(3)一般地,对于表一,用含a的代数式表示b=______;对于表二,用含a的代数式表示b=______;
(4)我们还发现,表一中的三边长“3,4,5”与表二中的“6,8,10”成倍数关系,表一中的“5,l2,13”与表二中的“10,24,26”恰好也成倍数关系….请直接利用这一规律计算:在Rt△ABC中,当a=数学公式,b=数学公式时,斜边c的值.

查看答案和解析>>

观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式.
1
2
+1
=
1×(
2
-1)
(
2
+1)(
2
-1)
=
2
-1
2-1
=
2
-1
1
3
+
2
=
1×(
3
-
2
)
(
3
+
2
)(
3
-
2
)
=
3
-
2
3-2
=
3
-
2

同理可得:
1
4
+
3
=
4
-
3

从计算结果中找出规律,并利用这一规律计算:
1
2
+1
+
1
3
+
2
+
1
4
+
3
+…+
1
2013
+
2012
2013
+1)

查看答案和解析>>

阅读下面问题:
1
2
+1
=
2
-1,
1
3
+
2
=
3
-
2
1
4
+
3
=
4
-
3
1
5
+
4
=
5
-
4
,…
从计算结果中找出规律,再利用这一规律计算下列式子的值:
(
1
2
+1
+
1
3
+
2
+
1
4
+
3
+…+
1
2002
+
2001
)(
2002
+1)

查看答案和解析>>

观察下列分母有理化的计算:
1
2
+1
=
2
-1,
1
3
+
2
=
3
-
2
1
4
-
3
=
4
-
3
1
5
+
4
=
5
-
4
…在计算结果中找出规律,用含字母n(n表示大于0的自然数)表示;再利用这一规律计算下列式子的值:(
1
2
+
1
+
1
3
+
2
+
1
4
+
3
+…+
1
2014
+
2013
)(
2014
+1
) 的值.

查看答案和解析>>


同步练习册答案