15.已知如下图平行四边形ABCD和平行四边形AB′C′D有一条公共边AD.它的对边在同一条直线上.若.则= . 查看更多

 

题目列表(包括答案和解析)

如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(-2,0)、(3,0)、(0,4).
(1)求抛物线的解析式;
(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;
(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.

查看答案和解析>>

如下图,已知在平行四边形ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.

求证:四边形GEHF是平行四边形.   

查看答案和解析>>

如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(-2,0)、(3,0)、(0,4).

(1)求抛物线的解析式;

(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;

(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3∶4的两部分,求出该直线的解析式.

查看答案和解析>>

已知:矩形ABCDADAB,O是对角线的交点,过O任作一直线分别交BCAD于点MN(如图①).

(1)求证:BM=DN

(2)如图②,四边形AMNE是由四边形CMND沿MN翻折得到的,连接CN,求证:四边形AMCN是菱形;

(3)在(2)的条件下,如图③,若,动点分别从两点同时出发,沿△AFB和△CDN各边匀速运动一周.即点停止,点停止. 在运动过程中,已知点的速度为每秒5,点的速度为每秒4,运动时间为秒,当四点为顶点的四边形是平行四边形时,求的值.

查看答案和解析>>

精英家教网已知:如图,抛物线y=x2+bx+c(b、c为常数)经过原点和E(3,0).
(1)求该抛物线所对应的函数关系式;
(2)设A是该抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值及此时点A的坐标;如果不存在,请说明理由;
③当B(
12
,0)时,x轴上是否存在两点P、Q(点P在点Q的左边),使得四边形PQDA是菱形?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案