12.如图(6),点F是△ABC的外角平分线上的交点,下列说法中正确的是 查看更多

 

题目列表(包括答案和解析)

如图,点F是△ABC的外角平分线上的交点,下列说法中正确的是  (    )

(1)BF=CF    (2)点F到AB、AC的距离相等

(3)点F到AB、AC、BC的距离相等  (4)点F在∠BAC的平分线上

A.1个              B.2个               C.3个               D.4个

查看答案和解析>>

(1)如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是______.

(2)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:数学公式,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
①求抛物线和直线AB的解析式;
②点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
③点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=数学公式S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

附加题:
(1)如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是______.

(2)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
①求抛物线和直线AB的解析式;
②点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
③点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

阅读材料:

如下图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:

如下图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B

(1)求抛物线和直线AB的解析式;

(2)点P是抛物线(在第一象限内)上的一个动点,连结PAPB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB

(3)是否存在一点P,使SPABSCAB,若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

已知如图点D是△ABC的两外角平分线的交点,下列说法:

①AD=CD②D到AB、BC的距离相等③D到△ABC的三边的距离相等  ④点D在∠B的平分线上

其中正确的说法的序号是_____________________.

 

 

查看答案和解析>>


同步练习册答案