某城市理论预测2000年到2004年人口总数与年份的关系如下表所示年份200x(年) 0 1234 人口数y 5 7 8 11 19 (1)请画出上表数据的散点图,(2)请根据上表提供的数据.用最小二乘法求出y关于x的线性回归方程y=bx+a,(3) 据此估计2009年该 城市人口总数. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

(本题满分14分)已知,且以下命题都为真命题:

命题 实系数一元二次方程的两根都是虚数;

命题 存在复数同时满足.

求实数的取值范围.

查看答案和解析>>

(本题满分14分)已知如图:平行四边形ABCD中,,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.

(1)求证:GH∥平面CDE;

(2)若,求四棱锥F-ABCD的体积.

 

 

 

查看答案和解析>>

(本题满分14分).如图,ABCD中,AB=1,AD=2AB,∠ADC=,EC⊥面ABCD,

EF∥AC, EF=, CE=1

(1)求证:AF∥面BDE

(2)求CF与面DCE所成角的正切值。

 

查看答案和解析>>

一、选择题:BDCCB   BADCA

二、填空题:    11.  2            12.     

13.       14.

三、解答题:

15、解:依题意得:(1)=0,解之得m=0或m=3

∴当m=0或m=3时,复数是实数; ……………4分

(2)≠0,解之得m≠0且m≠3

∴当m≠0且m≠3时,复数是虚数;……………8分

(3),解之得m=3

∴当m=3时,复数是纯虚数.      ……………12分

16、解:(1)∵      ∴  两边平方相加,

   即  .       ………………4分

∴曲线是长轴在x轴上且为10,短轴为8,中心在原点的椭圆.   ………6分

(2)∵∴由代入

                    ……………10分

∴它表示过(0,)和(1, 0)的一条直线.               …………12分

 

 

 

 

 

17、解:(Ⅰ),                                  ………1分

.                               ………2分

            .                            ………4分

        椭圆的方程为,                       ………5分

因为                               ………6分

所以离心率.                           ………8分

(Ⅱ)设的中点为,则点.           ………10分

又点K在椭圆上,则中点的轨迹方程为  ………14分

 

 

18、解:(1)列出2×2列联表

 

 

说谎

不说谎

合计

女生

15

5

20

男生

10

20

30

合计

25

25

50

…………6分

(2)假设H0 "说谎与性别无关",则随机变量K2的观测值:

                  ……………10分

,而             ……………………12分

所以有99.5%的把握认为"说谎与性别有关".          ……………14分

 

 

 

 

 

 

 

 

 

 

 

 

19、解:(1)

………………4分

(2),0×5+1×7+2×8+3×11+4×19=132,

         …………8分

 

故Y关于x的线性回归方程为 y=3.2x+3.6         ………10分

(3)x=5,y=196(万)

据此估计2005年.该 城市人口总数196(万)            ………14分

 

 

 

 

 

 

 

 

 

 

 

 

20、解:(1)设椭圆的半焦距为,依题意   ………2分

 

∴  所求椭圆方程为.         ………4分

 

(2)设

轴时,.                                ………5分

轴不垂直时,设直线的方程为.        ………6分

由已知,得.                 ………7分

代入椭圆方程,整理得,………8分

.………10分

.     ………12分

当且仅当,即时等号成立.当时,

综上所述.                                      ………13分

最大时,面积取最大值.………14分

 

 


同步练习册答案