解决问题:(1)根据上面的学习.请你确定方程的整数解只可能是哪几个整数? 查看更多

 

题目列表(包括答案和解析)

“数缺形时少直观,形少数时难入微”,小明在探究数学公式…+数学公式结果时,发现可利用图形的知识来解决问题.他是这样规定的:在图1中,若线段AB的长为1,C1为AB的中点,C2为C1B的中点,C3 为C2B的中点,…,Cn为Cn-1B的中点.
(1)则可以得出线段C1B=________,C1C2=________,ACn=________;
(2)从而发现了数学公式…+数学公式=________;
(3)小明学习上爱动脑,经过认真思考和分析后,发现在计算数学公式时,也可以利用构造一个图形,通过面积来计算.他构造图形是:如图2,正△ABC面积为1,分别取AC、BC两边的中点A1、B1,再分别取A1C、B1C的中点A2、B2,依次取下去…,能直观地计算出结果.请你根据这个图形说明小明的结果:数学公式=________.
请你对小明的发现,试给出必要的说理.

查看答案和解析>>

“数缺形时少直观,形少数时难入微”,小明在探究…+结果时,发现可利用图形的知识来解决问题.他是这样规定的:在图1中,若线段AB的长为1,C1为AB的中点,C2为C1B的中点,C3 为C2B的中点,…,Cn为Cn-1B的中点.
(1)则可以得出线段C1B=______,C1C2=______,ACn=______;
(2)从而发现了…+=______;
(3)小明学习上爱动脑,经过认真思考和分析后,发现在计算时,也可以利用构造一个图形,通过面积来计算.他构造图形是:如图2,正△ABC面积为1,分别取AC、BC两边的中点A1、B1,再分别取A1C、B1C的中点A2、B2,依次取下去…,能直观地计算出结果.请你根据这个图形说明小明的结果:=______.
请你对小明的发现,试给出必要的说理.

查看答案和解析>>

“数缺形时少直观,形少数时难入微”,小明在探究
1
2
+
1
22
+
…+
1
2n-1
+
1
2n
结果时,发现可利用图形的知识来解决问题.他是这样规定的:在图1中,若线段AB的长为1,C1为AB的中点,C2为C1B的中点,C3 为C2B的中点,…,Cn为Cn-1B的中点.
(1)则可以得出线段C1B=
 
,C1C2=
 
,ACn=
 

(2)从而发现了
1
2
+
1
22
+
…+
1
2n-1
+
1
2n
=
 

(3)小明学习上爱动脑,经过认真思考和分析后,发现在计算
1
4
+
1
42
+
1
43
+…+
1
4n
时,也可以利用构造一个图形,通过面积来计算.他构造图形是:如图2,正△ABC面积为1,分别取AC、BC两边的中点A1、B1,再分别取A1C、B1C的中点A2、B2,依次取下去…,能直观地计算出结果.请你根据这个图形说明小明的结果:
1
4
+
1
42
+
1
43
+…+
1
4n
=
 

请你对小明的发现,试给出必要的说理.
精英家教网

查看答案和解析>>

小刚在学习绝对值的时候发现:|3-1|可表示数轴上3和1这两点间的距离;而|3+1|即|3-(-1)|则表示3和-1这两点间的距离.根据上面的发现,小刚将|x-2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与
-3的点
-3的点
在数轴上的距离.小刚继续研究发现:x取不同的值时,|x-2|+|x+3|=5有最   值,请你借助数轴解决下列问题
(1)当|x-2|+|x+3|=5时,x可取整数
0
0
(写出一个符合条件的整数即可);
(2)若A=|x+1|+|x-5|,那么A的最小值是
6
6

(3)若B=|x+2|+|x|+|x-1|,那么B的最小值是
3
3
,此时x为
0
0

(4)写出|x+5|+|x+3|+|x+1|+|x-2|的最小值.

查看答案和解析>>

小刚在学习绝对值的时候发现:|3-1|可表示数轴上3和1这两点间的距离;而|3+1|即|3-(-1)|则表示3和-1这两点间的距离.根据上面的发现,小刚将|x-2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与______在数轴上的距离.小刚继续研究发现:x取不同的值时,|x-2|+|x+3|=5有最 值,请你借助数轴解决下列问题
(1)当|x-2|+|x+3|=5时,x可取整数______(写出一个符合条件的整数即可);
(2)若A=|x+1|+|x-5|,那么A的最小值是______;
(3)若B=|x+2|+|x|+|x-1|,那么B的最小值是______,此时x为______;
(4)写出|x+5|+|x+3|+|x+1|+|x-2|的最小值.

查看答案和解析>>


同步练习册答案