①猜想与的数量关系是 ,②证明你猜想的结论. 查看更多

 

题目列表(包括答案和解析)

观察、猜想、探究
已知矩形ABCD中,直线l垂直AC于点C,点E是BC上的动点(不与点C重合),过点E作EF⊥AE交直线l于点F.
(1)如图①,当AB=BC,E为BC中点时,猜想线段AE与FE有何数量关系,并证明你的猜想;
(2)如图②,已知AB=3,AD=4.
①当点E与点B重合时,求AE:EF的值;
②探究:当点E在线段BC上运动时,AE:EF的值是否发生改变?若不变,请求出该值并给予证明;若发生改变,请说明理由.

查看答案和解析>>

【图形变换的探究与猜想】
从特殊到一般,从全等到相似;求证线段的数量关系或位置关系.关键是第一问的全等的证明,发现全等的三角形,一般是利用ASA完成证明,从而得到需要证明的相似三角形(利用两边对应成比例且夹角相等).
例:正方形ABCD,E为直线AB上任意一点,DF⊥DE交直线BC于点F,直线EF、AC交于点H,连接DH.

(1)①如图1,当点E在边AB上时,判断线段DH与线段EF之间的数量关系和位置关系;
②如图2,当点E在边AB的反向延长线上时,判断线段DH与线段EF之间的数量关系和位置关系;写出你的结论并从①、②中任选一个证明;
(2)如图3,若点E在AB边的延长线上,其它条件不变,完成图3,判断线段DH与线段EF之间的数量关系和位置关系,直接写出你的结论,不需要证明;
(3)如图4,若将图1中的正方形ABCD改为矩形ABCD为正方形,且AB=kAD,其它条件不变,判断线段DH与线段EF之间的数量关系和位置关系,直接写出结论,不需要证明.

查看答案和解析>>

(2012•龙岩质检)观察、猜想、探究
已知矩形ABCD中,直线l垂直AC于点C,点E是BC上的动点(不与点C重合),过点E作EF⊥AE交直线l于点F.
(1)如图①,当AB=BC,E为BC中点时,猜想线段AE与FE有何数量关系,并证明你的猜想;
(2)如图②,已知AB=3,AD=4.
①当点E与点B重合时,求AE:EF的值;
②探究:当点E在线段BC上运动时,AE:EF的值是否发生改变?若不变,请求出该值并给予证明;若发生改变,请说明理由.

查看答案和解析>>

(2013•临汾二模)操作与证明
把两个全等的含45°角的三角板按如图所示的位置放置,使B、A、D在一条直线上,C、A、E在一条直线上,过点C作CM⊥BD于M,过点E作EF∥BD;直线CM与EF相交于点F.
(1)求证:△CEF是等腰直角三角形.
猜想与发现
(2)在图1的条件下,CF与BD的数量关系为
CF=
1
2
BD
CF=
1
2
BD

(3)如图2若把图1中Rt△ADE换为Rt△ABC不全等但相似的三角板时,其他条件不变,此时CF与BD的数量关系为
CF=
1
2
BD
CF=
1
2
BD

拓展与探究
(4)如图3若将图1中的两块三角板换成任意两个全等的直角三角形(Rt△ABC≌Rt△DAE),使锐角顶点A重合,点C、A、E在一条直线上,连接BD交AC于G,过点C作CM⊥BD于M,过点E作EF∥BD,直线CM与EF于点F,图1中CF与BD的数量关系还成立吗?若成立,请加以证明;若不成立,请说明你的理由.

查看答案和解析>>

如图,AB为半圆的直径,O是圆心,C、D是半圆上的两点,且∠COD=90°,AC与BD相交于点E.
(1)试写出图中一对相似三角形,并写出他们相似的理由;
(2)请你在图中量一量线段DA和DE的长,猜想它们有何数量关系,并证明你的猜想.精英家教网

查看答案和解析>>


同步练习册答案