题目列表(包括答案和解析)
已知椭圆
(a>b>0),点
在椭圆上。
(I)求椭圆的离心率。
(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。
【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.
已知函数
其中a>0.
(I)求函数f(x)的单调区间;
(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(III)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值。
【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.
已知函数
,(
),![]()
(1)若曲线
与曲线
在它们的交点(1,c)处具有公共切线,求a,b的值
(2)当
时,若函数
在区间[k,2]上的最大值为28,求k的取值范围
【解析】(1)
,
∵曲线
与曲线
在它们的交点(1,c)处具有公共切线
∴
,![]()
∴![]()
(2)当
时,
,
,![]()
令
,则
,令
,
∴
为单调递增区间,
为单调递减区间,其中F(-3)=28为极大值,所以如果区间[k,2]最大值为28,即区间包含极大值点
,所以![]()
【考点定位】此题应该说是导数题目中较为常规的类型题目,考查的切线,单调性,极值以及最值问题都是课本中要求的重点内容,也是学生掌握比较好的知识点,在题目中能够发现F(-3)=28,和分析出区间[k,2]包含极大值点
,比较重要
设A是如下形式的2行3列的数表,
|
a |
b |
c |
|
d |
e |
f |
满足性质P:a,b,c,d,e,f
,且a+b+c+d+e+f=0
记
为A的第i行各数之和(i=1,2),
为A的第j列各数之和(j=1,2,3)记
为
中的最小值。
(1)对如下表A,求
的值
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)设数表A形如
|
1 |
1 |
-1-2d |
|
d |
d |
-1 |
其中
,求
的最大值
(3)对所有满足性质P的2行3列的数表A,求
的最大值。
【解析】(1)因为
,
,所以![]()
(2)
,![]()
因为
,所以
,![]()
所以![]()
当d=0时,
取得最大值1
(3)任给满足性质P的数表A(如图所示)
|
a |
b |
c |
|
d |
e |
f |
任意改变A的行次序或列次序,或把A中的每个数换成它的相反数,所得数表
仍满足性质P,并且
,因此,不妨设
,
,![]()
由
得定义知,
,
,
,
从而![]()
![]()
所以,
,由(2)知,存在满足性质P的数表A使
,故
的最大值为1
【考点定位】此题作为压轴题难度较大,考查学生分析问题解决问题的能力,考查学生严谨的逻辑思维能力
一、选择题(本大题共8小题,每小题5分,共40分)
1.D 2.A 3.B 4.D 5.B 6.C 7.C 8.B
二、填空题(本大题共6小题,每小题5分,共30分)
9.
10.
11.5 10 12.
13.② 14.
含详解.files/image347.gif)
三、解答题(本大题共6小题,共80分)
15.(共13分)
解:(Ⅰ)含详解.files/image349.gif)
含详解.files/image351.gif)
.
因为函数
的最小正周期为
,且
,
所以
,解得
.
(Ⅱ)由(Ⅰ)得
.
因为
,
所以
,
所以
,
因此
,即
的取值范围为
.
16.(共14分)
解法一:
(Ⅰ)取
中点
,连结
.
,
.
,
.
含详解.files/image389.gif)
,
平面
.
平面
,
.
(Ⅱ)
,
,
.
又
,
.
又
,即
,且
,
平面
.
取
中点
.连结
.
,
.
是
在平面
内的射影,
.
是二面角
的平面角.
在
中,
,
,
,
.
含详解.files/image448.gif)
二面角
的大小为
.
(Ⅲ)由(Ⅰ)知
平面
,
平面
平面
.
过
作
,垂足为
.
平面
平面
,
平面
.
的长即为点
到平面
的距离.
由(Ⅰ)知
,又
,且
,
平面
.
平面
,
.
在
中,
,
,
.
.
点
到平面
的距离为
.
解法二:
(Ⅰ)
,
,
.
又
,
.
,
平面
.
平面
,
.
(Ⅱ)如图,以
为原点建立空间直角坐标系
.
则
.
设
.
,
,
.
取
中点
,连结
.
,
,
,
.
是二面角
的平面角.
,
,
,
.
二面角
的大小为
.
(Ⅲ)
,
在平面
内的射影为正
的中心
,且
的长为点
到平面
的距离.
如(Ⅱ)建立空间直角坐标系
.
,
点
的坐标为
.
.
点
到平面
的距离为
.
17.(共13分)
解:(Ⅰ)记甲、乙两人同时参加
岗位服务为事件
,那么
,
即甲、乙两人同时参加
岗位服务的概率是
.
(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件
,那么
,
所以,甲、乙两人不在同一岗位服务的概率是
.
(Ⅲ)随机变量
可能取的值为1,2.事件“
”是指有两人同时参加
岗位服务,
则
.
所以
,
的分布列是
含详解.files/image274.gif)
1
3
含详解.files/image076.gif)
含详解.files/image607.gif)
含详解.files/image609.gif)
18.(共13分)
解:含详解.files/image611.gif)
含详解.files/image613.gif)
.
令
,得
.
当
,即
时,
的变化情况如下表:
含详解.files/image626.gif)
含详解.files/image628.gif)
含详解.files/image630.gif)
含详解.files/image632.gif)
含详解.files/image634.gif)
含详解.files/image282.gif)
含详解.files/image637.gif)
0
含详解.files/image639.gif)
含详解.files/image637.gif)
当
,即
时,
的变化情况如下表:
含详解.files/image626.gif)
含详解.files/image646.gif)
含详解.files/image648.gif)
含详解.files/image630.gif)
含详解.files/image651.gif)
含详解.files/image282.gif)
含详解.files/image637.gif)
含详解.files/image639.gif)
0
含详解.files/image637.gif)
所以,当
时,函数
在
上单调递减,在
上单调递增,
在
上单调递减.
当
时,函数
在
上单调递减,在
上单调递增,在
上单调递减.
当
,即
时,
,所以函数
在
上单调递减,在
上单调递减.
19.(共14分)
解:(Ⅰ)由题意得直线
的方程为
.
因为四边形
为菱形,所以
.
于是可设直线
的方程为
.
由
得
.
因为
在椭圆上,
所以
,解得
.
设
两点坐标分别为
,
则
,
,
,
.
所以
.
所以
的中点坐标为
.
由四边形
为菱形可知,点
在直线
上,
所以
,解得
.
所以直线
的方程为
,即
.
(Ⅱ)因为四边形
为菱形,且
,
所以
.
所以菱形
的面积
.
由(Ⅰ)可得
,
所以
.
所以当
时,菱形
的面积取得最大值
.
20.(共13分)
(Ⅰ)解:
,
,
;
,
.
(Ⅱ)证明:设每项均是正整数的有穷数列
为
,
则
为
,
,
,
,
,
从而
含详解.files/image758.gif)
.
又
,
所以
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com