设直线与椭圆相切. 查看更多

 

题目列表(包括答案和解析)

设直线与椭圆相切。 (I)试将表示出来;  (Ⅱ)若经过动点可以向椭圆引两条互相垂直的切线,为坐标原点,求证:为定值。

查看答案和解析>>

(12分)设直线与椭圆相切。 (I)试将表示出来; (Ⅱ)若经过动点可以向椭圆引两条互相垂直的切线,为坐标原点,求证:为定值。

查看答案和解析>>

已知椭圆C1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1。
(1)求椭圆C1的方程;
(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M、N。当线段AP的中点与MN的中点的横坐标相等时,求h的最小值。

查看答案和解析>>

(本小题13分).已知椭圆的左、右焦点坐标分别是, ,离心率是,直线椭圆交与不同的两点,以线段为直径作圆,圆心为

(Ⅰ)求椭圆的方程;

(Ⅱ)若圆轴相切,求圆心的坐标;

(Ⅲ)设是圆上的动点,当变化时,求的最大值。

查看答案和解析>>

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线

于点,线段垂直平分线交于点,求点的轨迹的方程;

(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,

求出的斜率范围,若不存在,说明理由。

 

查看答案和解析>>

数学(文)

第I卷(共60分)

一、选择题(每小题5分,共60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

B

A

A

D

A

C

B

A

A

第Ⅱ卷(共90分)

二、填空题(每小题4分,共16分)

13.6ec8aac122bd4f6e     14.3        15.97       16.③

三、解答题(共74分)

17.(本小题满分12分)

   (I)6ec8aac122bd4f6e的内角和6ec8aac122bd4f6e

        6ec8aac122bd4f6e

        6ec8aac122bd4f6e

   (Ⅱ)6ec8aac122bd4f6e

         6ec8aac122bd4f6e

         当6ec8aac122bd4f6e6ec8aac122bd4f6e时,6ec8aac122bd4f6e取最大值6ec8aac122bd4f6e

18.(本题满分12分)

    记A:该夫妇生一个小孩是患病男孩,B:该夫妇生一个小孩是患病女孩:C:该夫妇生一个小孩是不患病男孩;D:该夫妇生一个小孩是不患病女孩,则

    6ec8aac122bd4f6e

   (I)6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

   (Ⅱ)该夫妇所生的前两个是患病男孩,后一个患病女孩的概率为6ec8aac122bd4f6e,所以

             6ec8aac122bd4f6e

19.(本题满分12分)

解法一:(I)证明:连接6ec8aac122bd4f6e,设6ec8aac122bd4f6e,连接DE

6ec8aac122bd4f6e     6ec8aac122bd4f6e三棱柱6ec8aac122bd4f6e是正三棱柱,且6ec8aac122bd4f6e

     6ec8aac122bd4f6e四边形6ec8aac122bd4f6e是正方形,

     ∴E是6ec8aac122bd4f6e的中点,又6ec8aac122bd4f6e6ec8aac122bd4f6e的中点,

     ∴6ec8aac122bd4f6e

     ∵6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e

     ∴6ec8aac122bd4f6e平面6ec8aac122bd4f6e

(Ⅱ)解:在平面6ec8aac122bd4f6e内作6ec8aac122bd4f6e于点6ec8aac122bd4f6e,在面6ec8aac122bd4f6e;内作6ec8aac122bd4f6e6ec8aac122bd4f6e连接6ec8aac122bd4f6e

     ∵平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,∴6ec8aac122bd4f6e平面6ec8aac122bd4f6e

     ∵6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e上的射影,6ec8aac122bd4f6e

     ∴6ec8aac122bd4f6e是二面角6ec8aac122bd4f6e的平面角

     设6ec8aac122bd4f6e在正6ec8aac122bd4f6e中,6ec8aac122bd4f6e

     在6ec8aac122bd4f6e中,6ec8aac122bd4f6e6ec8aac122bd4f6e中,6ec8aac122bd4f6e

     从而6ec8aac122bd4f6e

     所以,二面角6ec8aac122bd4f6e的平面角的余弦值为6ec8aac122bd4f6e

解法二:建立空间直角坐标系6ec8aac122bd4f6e,如图,

(I)证明:连接6ec8aac122bd4f6e6ec8aac122bd4f6e,连接6ec8aac122bd4f6e,设6ec8aac122bd4f6e

6ec8aac122bd4f6e    则6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e

(Ⅱ)解:∵6ec8aac122bd4f6e

      设6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的法向量,则6ec8aac122bd4f6e,且6ec8aac122bd4f6e

      故6ec8aac122bd4f6e,取6ec8aac122bd4f6e,得6ec8aac122bd4f6e

      同理,可求得平面6ec8aac122bd4f6e的法向量是6ec8aac122bd4f6e

      设二面角6ec8aac122bd4f6e的大小为6ec8aac122bd4f6e,则6ec8aac122bd4f6e

      所以,二面角6ec8aac122bd4f6e的平面角的余弦值为6ec8aac122bd4f6e

20.(本题满分12分)

   (I)6ec8aac122bd4f6e,依题意,6ec8aac122bd4f6e,即

        6ec8aac122bd4f6e

        解得6ec8aac122bd4f6e

        6ec8aac122bd4f6e

        令6ec8aac122bd4f6e,得6ec8aac122bd4f6e6ec8aac122bd4f6e列表可得:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

1

6ec8aac122bd4f6e

6ec8aac122bd4f6e

+

0

0

+

6ec8aac122bd4f6e

递增

极大

递减

极小

递增

        所以,6ec8aac122bd4f6e是极大值;6ec8aac122bd4f6e是极小值

  (Ⅱ)曲线方程为6ec8aac122bd4f6e6ec8aac122bd4f6e不在曲线上,

        设切点为6ec8aac122bd4f6e,则点6ec8aac122bd4f6e的坐标满足6ec8aac122bd4f6e

        因6ec8aac122bd4f6e,故切线的方程为6ec8aac122bd4f6e

        注意到点6ec8aac122bd4f6e在切线上,有6ec8aac122bd4f6e

        化简得6ec8aac122bd4f6e,解得6ec8aac122bd4f6e

21.(本题满分12分)

  (I)将6ec8aac122bd4f6e代入6ec8aac122bd4f6e6ec8aac122bd4f6e,整理得

      6ec8aac122bd4f6e

      由6ec8aac122bd4f6e6ec8aac122bd4f6e,故

6ec8aac122bd4f6e

(Ⅱ)当两条切线的斜率都存在而且不等于6ec8aac122bd4f6e时,设其中一条的斜率为k,

      则另外一条的斜率为6ec8aac122bd4f6e

      于是由上述结论可知椭圆斜率为k的切线方程为

      6ec8aac122bd4f6e    ①

      又椭圆斜率为6ec8aac122bd4f6e的切线方程为

      6ec8aac122bd4f6e    ②

       由①得6ec8aac122bd4f6e

       由②得6ec8aac122bd4f6e

两式相加得6ec8aac122bd4f6e

      于是,所求P点坐标6ec8aac122bd4f6e满足6ec8aac122bd4f6e因此,6ec8aac122bd4f6e

      当一条切线的斜率不存在时,另一条切线的斜率必为0,此时显然也有6ec8aac122bd4f6e

      所以6ec8aac122bd4f6e为定值。

 

22.(本题满分14分)

 (I)由6ec8aac122bd4f6e6ec8aac122bd4f6e

      当6ec8aac122bd4f6e时,6ec8aac122bd4f6e,化简得

      6ec8aac122bd4f6e  ①

      以6ec8aac122bd4f6e代替6ec8aac122bd4f6e

      6ec8aac122bd4f6e   ②

      两式相减得

      6ec8aac122bd4f6e

      则6ec8aac122bd4f6e,其中6ec8aac122bd4f6e

      所以,数列6ec8aac122bd4f6e为等差数列

 (Ⅱ)由6ec8aac122bd4f6e,结合(I)的结论知6ec8aac122bd4f6e

       于是,6ec8aac122bd4f6e

       6ec8aac122bd4f6e

       所以,原不等式成立

其他解法参照以上评分标准评分

 

 

本资料由《七彩教育网》www.7caiedu.cn 提供!


同步练习册答案