题目列表(包括答案和解析)
某工厂家具车间造A,B两类型桌子,每张桌子需木工和漆工两道工序完成,已知木工做一张A,B型的桌子分别需要1小时和2小时,漆工油漆一张A,B型的桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A,B型的桌子分别获利润2千元和3千元,试问工厂每天应生产A,B型的桌子各多少张时,才能获利润最大?
如图,已知⊙
中,直径
垂直于弦
,垂足为
,
是
延长线上一点,
切⊙
于点
,连接
交
于点
,证明:![]()
![]()
【解析】本试题主要考查了直线与圆的位置关系的运用。要证明角相等,一般运用相似三角形来得到,或者借助于弦切角定理等等。根据
为⊙
的切线,∴
为弦切角
连接
∴
…注意到
是直径且垂直弦
,所以
且
…利用
,可以证明。
解:∵
为⊙
的切线,∴
为弦切角
连接
∴
……………………4分
又∵
是直径且垂直弦
∴
且
……………………8分
∴
∴ ![]()
在
中,已知
,面积
,
(1)求
的三边的长;
(2)设
是
(含边界)内的一点,
到三边
的距离分别是![]()
①写出
所满足的等量关系;
②利用线性规划相关知识求出
的取值范围.
【解析】第一问中利用设
中角
所对边分别为![]()
由
得![]()
![]()
又由
得
即
![]()
又由
得
即
![]()
又
又
得![]()
即
的三边长![]()
![]()
第二问中,①
得
![]()
故![]()
②![]()
令
依题意有![]()
作图,然后结合区域得到最值。
![]()
在
中,已知
,
;
(1)求
的值;(2)若
,求
的值;
【解析】第一问中,利用![]()
第二问中
即
又
![]()
再有余弦定理解得。
解:(1)
……4分
(2)
即![]()
又
……8分
又![]()
即 ![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com