题目列表(包括答案和解析)
(本小题满分10分)【选修4—5:不等式选讲】
设函数![]()
(I)画出函数
的图象;
(II)若关于
的不等式
有解,求实数
的取值范围.
【选修4—5:不等式选讲】 设函数
>1),且
的最小值为
,若
,求
的取值范围。
设函数
,若
为函数
的一个极值点,则下列图象不可能为
的图象是
![]()
【答案】D
【解析】设
,∴
,
又∴
为
的一个极值点,
∴
,即
,
∴
,
当
时,
,即对称轴所在直线方程为
;
当
时,
,即对称轴所在直线方程应大于1或小于-1.
【选修4—5:不等式选讲】
设函数
>1),且
的最小值为
,若
,求
的取值范围。
如图,直线
与抛物线
交于
两点,与
轴相交于点
,且
.
(1)求证:
点的坐标为
;
(2)求证:
;
(3)求
的面积的最小值.
![]()
【解析】设出点M的坐标
,并把过点M的方程设出来.为避免对斜率不存在的情况进行讨论,可以设其方程为
,然后与抛物线方程联立消x,根据
,即可建立关于
的方程.求出
的值.
(2)在第(1)问的基础上,证明:
即可.
(3)先建立面积S关于m的函数关系式,根据
建立即可,然后再考虑利用函数求最值的方法求最值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com