(Ⅰ)求a与b的关系式(用a表示b).并求的单调区间, 查看更多

 

题目列表(包括答案和解析)

的一个极值点;

   (I)求ab的关系式(用a表示b),并求的单调区间;

   (II)设成立,求a的取值范围.

查看答案和解析>>

已知
a
b
满足|
a
|=|
b
|=1
,且
a
b
之间有关系式|k
a
+
b
|=
3
|
a
-k
b
|
,其中k>0.
(Ⅰ)用k表示
a
b

(Ⅱ)求
a
b
的最小值,并求此时
a
b
的夹角θ的大小.

查看答案和解析>>

已知
a
b
满足|
a
|=|
b
|=1
,且
a
b
之间有关系式|k
a
+
b
|=
3
|
a
-k
b
|
,其中k>0.
(Ⅰ)用k表示
a
b

(Ⅱ)求
a
b
的最小值,并求此时
a
b
的夹角θ的大小.

查看答案和解析>>

两县城A和B相距20km,现计划在两城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.
(1)按下列要求建立函数关系式:
①设∠CAB=θ(rad),将θ表示成y 的函数;并写出函数的定义域.
②设AC=x(km),将x表示成y的函数;并写出函数的定义域.
(2)请你选用(1)中的一个函数关系确定垃圾处理厂的位置,使建在此处的垃圾处理厂对城A和城B的总影响度最小?

查看答案和解析>>

设x=3是函数f(x)=(的一个极值点.
①求a与b的关系式(用a表示b);
②求f(x)的单调区间;
③设a>0,g(x)=,若存在ξ1,ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立.求a的取值范围.

查看答案和解析>>

一、选择题

1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

2,4,6

13.    14.2      15. 

16.

三、解答题

17.(本小题满分12分)

       解证:(I)

       由余弦定理得              …………4分

       又                                               …………6分

     (II)

                                                                 …………10分

                                                                                      

即函数的值域是                                                            …………12分

18.(本小题满分12分)

       解:(I)依题意

                                                            …………2分

      

                                                                    …………4分

                                                                        …………5分

(II)                   …………6分

                                                         …………7分

                …………9分

                                       …………12分

19.(本小题满分12分)

     (I)证明:依题意知:

     …4分

   (II)由(I)知平面ABCD

       ∴平面PAB⊥平面ABCD.                        …………4分

     在PB上取一点M,作MNAB,则MN⊥平面ABCD

       设MN=h

       则

                            …………6分

       要使

       即MPB的中点.                                                                  …………8分

   (Ⅲ)连接BD交AC于O,因为AB//CD,AB=2,CD=1,由相似三角形易得BO=2OD

∴O不是BD的中心……………………10分

又∵M为PB的中点

∴在△PBD中,OM与PD不平行

∴OM所以直线与PD所在直线相交

又OM平面AMC

∴直线PD与平面AMC不平行.……………………12分

20.(本小题满分12分)

       解:由图可知M(60,98),N(500,230),C(500,168),MN//CD.

设这两种方案的应付话费与通话时间的函数关系分别为

………………2分

……………………4分

   (Ⅰ)通话2小时,两种方案的话费分别为116元、168元.………………6分

   (Ⅱ)因为

故方案B从500分钟以后,每分钟收费0.3元.………………8分

(每分钟收费即为CD的斜率)

   (Ⅲ)由图可知,当

……………………11分

综上,当通话时间在()时,方案B较方案A优惠.………………12分

21.(本小题满分12分)

解:(Ⅰ)设的夹角为,则的夹角为

……………………2分

………………4分

(II)设

                                             …………5分

      

       由                            …………6分

                            …………7分

       上是增函数

       上为增函数

       m=2时,的最小值为         …………10分

       此时P(2,0),椭圆的另一焦点为,则椭圆长轴长

      

          …………12分

22.(本小题满分14分)

       解:(I)                           …………2分

       由                                                           …………4分

      

       当的单调增区间是,单调减区间是

                                                                                     …………6分

       当的单调增区间是,单调减区间是

                                                                                      …………8分

   (II)当上单调递增,因此

      

                                                                                                      …………10分

       上递减,所以值域是   

                                                                             …………12分

       因为在

                                                                                                             …………13分

       使得成立.

                                                                                                             …………14分