2.在某个变化过程中,可以取不同数值的量,叫做变量;数值始终保持不变的量,叫做常量.例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量.
1.函数概念包含:
(1)两个变量;
(2)两个变量之间的对应关系.
例1 下表是某市2000年统计的该市男学生各年龄组的平均身高.
![]()
(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?
(2)该市男学生的平均身高从哪一岁开始迅速增加?
(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?
解 (1)平均身高是146.1cm;
(2)约从14岁开始身高增加特别迅速;
(3)反映了该市男学生的平均身高和年龄这两个变量之间的关系,其中年龄是自变量,平均身高是因变量.
例2 写出下列各问题中的关系式,并指出其中的常量与变量:
(1)圆的周长C与半径r的关系式;
(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式;
(3)n边形的内角和S与边数n的关系式.
解 (1)C=2π r,2π是常量,r、C是变量;
(2)s=60t,60是常量,t、s是变量;
(3)S=(n-2)×180,2、180是常量,n、S是变量.
问题2 银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:
![]()
观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.
解 随着存期x的增长,相应的年利率y也随着增长.
问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:
![]()
观察上表回答:
(1)波长l和频率f数值之间有什么关系?
(2)波长l越大,频率f 就________.
解 (1) l 与 f 的乘积是一个定值,即
lf=300 000,
或者说
.
(2)波长l越大,频率f 就 越小 .
问题4 圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________.
利用这个关系式,试求出半径为1 cm、1.5 cm、2 cm、2.6 cm、3.2 cm时圆的面积,并将结果填入下表:
![]()
由此可以看出,圆的半径越大,它的面积就_________.
解 S=πr2.
![]()
圆的半径越大,它的面积就越大.
在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable).
上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量(independent variable),y是因变量(dependent variable),此时也称y是x的函数(function).表示函数关系的方法通常有三种:
(1)解析法,如问题3中的
,问题4中的S=π r2,这些表达式称为函数的关系式.
(2)列表法,如问题2中的利率表,问题3中的波长与频率关系表.
(3)图象法,如问题1中的气温曲线.
问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量(constant),如问题3中的300 000,问题4中的π等.
在学习与生活中,经常要研究一些数量关系,先看下面的问题.
问题1 如图是某地一天内的气温变化图.
![]()
看图回答:
(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.
(2)这一天中,最高气温是多少?最低气温是多少?
(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?解 (1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;
(2)这一天中,最高气温是5℃.最低气温是-4℃;
(3)这一天中,3时-14时的气温在逐渐升高.0时-3时和14时-24时的气温在逐渐降低.
从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?
3.注意培养学生对于“具体问题要具体分析”的良好学习方法.比如对于有实际意义的函数,自变量的取值范围应根据实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置.
2.注意训练与培养学生的优质联想能力.要求学生仿照例题自编题目是有效手段.
1.注意渗透与训练学生的归纳思维.比如例3、例4中各是4个小题,对每一个例题均可归纳为三类题型.而对于例3、例4这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式.
3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相应的函数值.
练习:选用课本练习
作业:选用课本练习
2.求函数自变量取值范围的两个方法(依据):
(1)要使函数的解析式有意义.
①函数的解析式是整式时,自变量可取全体实数;
②函数的解析式是分式时,自变量的取值应使分母≠0;
③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.
(2)对于反映实际问题的函数关系,应使实际问题有意义.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com