2、了解目前我国相关癌症的发病率和死亡率
1、分析癌症的病因和预防措施
21.解:解:(1)f ′(x)=
依题
≥0在[1,+∞)上恒成立
即a≥
在[1,+∞)上恒成立,∴a≥1 ……
(2)当a=1时,f ′(x)=
,其中x∈[
,2], 而x∈[
,1)时,f ′(x)<0;x∈(1,
]时,f ′(x)>0,
∴x=1是f (x)在[
,2]上唯一的极小值点,∴ [f (x)]min=f (1)=0 又f (
)-f (2)=
-2ln2=
>0,∴f (
)>f (2),
∴[f (x)]max=f (
)=1-ln2
综上,a=1时,f (x)在[
,2]上的最大值和最小值分别为1-ln2和0
(3)若a=1时,由(1)知f (x)=
在[1,+∞)上为增函数,
当n>1时,令x=
,则x>1,故f (x)>f (1)=0,
即f (
)=
+ln
=-
+ln
>0,∴ln
>
20. 解:
时,由
及
得![]()
当
时,
得
![]()
因为
,所以![]()
从而![]()
![]()
![]()
②由①知,不等式
![]()
只需证
即![]()
令
![]()
在
上恒正,所以
在
上单调递增,当
时,恒有
即原不等式得证
19. 解:(Ⅰ)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡。设事件
为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”,
事件
为“采访该团3人中,1人持金卡,0人持银卡”,事件
为“采访该团3人中,1人持金卡,1人持银卡”。
.
------------------------------------------------
![]()
![]()
, 所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是
。-----------------------7分
(Ⅱ)
的可能取值为0,1,2,3 ,
,
.
,
,.
---------------------------- 10分
所以
的分布列为
|
|
0 |
1 |
2 |
3 |
|
|
|
|
|
|
所以
, ……………………12分
17、解:(1)
平面ABCD
平面ABEF,
且四边形ABCD与ABEF是矩形,
AD
平面ABEF,
AD
AE,
BC∥AD
BC
AE
又FD=2,AD=1,所以AF=EF=
,所以四边形ABEF为正方形.
AE
FB,
又BF
BF
平面BCF,BC
平面BCF
所以AE
平面BCF……………………………………………4分
(2)设BF
AE=O,取FD的中点为H,连接OH,在
OH//BD,
![]()
HOF即为异面直线BD与AE所成的角(或补角),
在
中,OH=1,FH=1,FO=
,
cos
HOF=![]()
异面直线BD与AE所成的角的余弦值为
………………………….8分
(3)当N为FD的中点时, MN∥平面FCB
证明:取CD的中点G,连结NG,MG,MN,
则NG//FC,MG//BC, 又NG
平面NGM,MG
平面NGM且NG
MG=G
所以平面NGM//平面FBC,
MN
平面NGM
MN//平面FBC……………………………………………………………12分
(18)解:
(Ⅰ)由题意,c=1,可设椭圆方程为
,解得
,
(舍去)
所以椭圆方程为
。
……………4分
(Ⅱ)设直线AE方程为:
,代入
得
![]()
设
,
,因为点
在椭圆上,所以
![]()
………8分
又直线AF的斜率与AE的斜率互为相反数,在上式中以-K代K,可得
![]()
![]()
所以直线EF的斜率![]()
即直线EF的斜率为定值,其值为
。
……13分
16.解:(1)![]()
…………………………………(2分)
由题意可知:
为函数
的最值,且
,
,
,
………………………(6分)
(2)令
,则
,
,由
,![]()
又
,![]()
点A的坐标为
…………………………………(12分)
11. 360 12.
13. (1)(2) 14.
15.
.
(注:第一空2分,第二空3分.)
1-5CDACC 6-10 DCAB 10.答案:B,解析:由题
,则
,故有
,由于
且
,故
,所以
,其整数部分是
.
21. ( 13分)已知函数f (x)=
。(1)若函数f (x)在[1,+∞)上为增函数,求正实数
的取值范围;(2)当
=1时,求f
(x)在[
,2]上的最大值和最小值。(3)求证:对于大于1的正整数n,
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com