0  318380  318388  318394  318398  318404  318406  318410  318416  318418  318424  318430  318434  318436  318440  318446  318448  318454  318458  318460  318464  318466  318470  318472  318474  318475  318476  318478  318479  318480  318482  318484  318488  318490  318494  318496  318500  318506  318508  318514  318518  318520  318524  318530  318536  318538  318544  318548  318550  318556  318560  318566  318574  447090 

31.(2008天津)有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________________种(用数字作答).

答案432

试题详情

30.(2008重庆)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有     种(用数字作答).

答案216

试题详情

29.(2008陕西)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有     种.(用数字作答).

答案96

试题详情

28.(2006重庆)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是

(A)1800     (B)3600       (C)4320       (D)5040

答案B

解:不同排法的种数为=3600,故选B

试题详情

27.(2006重庆)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有

(A)30种  (B)90种     (C)180种  (D)270种

答案B

解析:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人,另两组都是2人,有种方法,再将3组分到3个班,共有种不同的分配方案,选B.

试题详情

26.(2006天津)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )

A.10种   B.20种   C.36种    D.52种

答案A

解析:将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分情况讨论:①1号盒子中放1个球,其余3个放入2号盒子,有种方法;②1号盒子中放2个球,其余2个放入2号盒子,有种方法;则不同的放球方法有10种,选A.

试题详情

25.(2006山东)已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为

(A)33     (B) 34      (C) 35        (D)36

答案A

解析 :不考虑限定条件确定的不同点的个数为=36,但集合B、C中有相同元素1,由5,1,1三个数确定的不同点的个数只有三个,故所求的个数为36-3=33个,选A

试题详情

24.(2006全国II)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有

  (A)150种           (B)180种        (C)200种           (D)280种

答案A 

解析:人数分配上有1,2,2与1,1,3两种方式,若是1,2,2,则有=60种,若是1,1,3,则有=90种,所以共有150种,选A

试题详情

23.(2006全国I)设集合。选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有

A.     B.        C.       D.

答案B

解析:若集合A、B中分别有一个元素,则选法种数有=10种;若集合A中有一个元素,集合B中有两个元素,则选法种数有=10种;若集合A中有一个元素,集合B中有三个元素,则选法种数有=5种;若集合A中有一个元素,集合B中有四个元素,则选法种数有=1种;若集合A中有两个元素,集合B中有一个元素,则选法种数有=10种;若集合A中有两个元素,集合B中有两个个元素,则选法种数有=5种;若集合A中有两个元素,集合B中有三个元素,则选法种数有=1种;若集合A中有三个元素,集合B中有一个元素,则选法种数有=5种;若集合A中有三个元素,集合B中有两个元素,则选法种数有=1种;若集合A中有四个元素,集合B中有一个元素,则选法种数有=1种;总计有,选B.

试题详情

22.(2006湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是

A.6        B. 12     C. 18       D. 24

答案B

解析:先排列1,2,3,有种排法,再将“+”,“-”两个符号插入,有种方法,共有12种方法,选B.

试题详情


同步练习册答案