1.2010年上海世博会的主题是“城市,让生活更美好”。下列叙述中不正确的是
A.世博会前期,处理废水时加入明矾可作为混凝剂以吸附水中的杂质
B.世博会期间,利用可降解的“玉米塑料”替代一次性饭盒,可防止产生白色污染
C.世博会中国馆--“东方之冠”使用的钢筋混凝土属于高分子化合物
D.世博停车场安装催化光解设施,可将汽车尾气中CO和NOx反应生成无毒气体
22.(本小题满分12分)
如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=
a(0<
≦1).
(Ⅰ)求证:对任意的![]()
(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求
的值。
21.(本小题满分12分)
如图,正方形
所在平面与平面四边形
所在平面互相垂直,△
是等腰直角三角形,![]()
(I)求证:
;
(II)设线段
、
的中点分别为
、
,求证:
∥![]()
(III)求二面角
的大小。
20.(本小题满分12分)
如图,在四棱锥
中,底面
是矩形,
平面
,
,
.以
的中点
为球心、
为直径的球面交
于点
.
(1)求证:平面
⊥平面
;
(2)求直线
与平面
所成的角;
(3)求点
到平面
的距离.
19.(本小题共14分)
如图,在三棱锥
中,
底面
,
点
,
分别在棱
上,且![]()
(Ⅰ)求证:
平面
;
(Ⅱ)当
为
的中点时,求
与平面
所成的角的大小;
(Ⅲ)是否存在点
使得二面角
为直二面角?并说明理由.
18.(本小题共14分)
如图,四棱锥
的底面是正方形,
,点E在棱PB上.
(Ⅰ)求证:平面
;
(Ⅱ)当
且E为PB的中点时,求AE与平面PDB所成的角的大小.
17.
(本题满分12分)如图,平面
平面
,![]()
是以
为斜边的等腰直角三角形,
分别为
,
,
的中点,
,
.
(I)设
是
的中点,证明:
平面
;
(II)证明:在
内存在一点
,使
平面
,并求点
到
,
的距离.
16.已知三个球的半径
,
,
满足
,则它们的表面积
,
,
,满足的等量关系是___________.
15.
如图,已知正三棱柱
的各条棱长都相等,
是侧 棱
的中点,则异面直线
所成的角的大小是
。
14.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com