0  361148  361156  361162  361166  361172  361174  361178  361184  361186  361192  361198  361202  361204  361208  361214  361216  361222  361226  361228  361232  361234  361238  361240  361242  361243  361244  361246  361247  361248  361250  361252  361256  361258  361262  361264  361268  361274  361276  361282  361286  361288  361292  361298  361304  361306  361312  361316  361318  361324  361328  361334  361342  447090 

1.7.1、  静止流体中的压强

(1)静止流体内部压强的特点

在静止流体内任何一点处都有压强,这一压强与方向无关仅与该点的深度有关;相连通的静止流体内部同一深度上各点的压强相等。

关于流体内部的压强与方向无关,可以证明如下:

在静止流体中的某点处任取一个长为的极小的直角三棱液柱,令其两侧面分别在竖直面内和水平面内,作其截面如图1-7-1所示,图中坐标轴x沿水平方向,坐标轴y沿竖直方向,以分别表示此液柱截面三角形的三条边长,且以表示此截面三角形的一个锐角如图1-7-1,又以,分别表示对应侧面上压强的大小,则各侧面所受压力的大小分别为:

由此液柱很小,则其重力将远小于它的一个侧面所受到的压力,故可忽略其重力的作用。则由此液柱的平衡条件知上述三力应互相平衡,乃有:

即       

注意到,代入上式便得

说明在流体内部的同一点处向各个方向的压强是相等的。

(2)静止流体内部压强的大小

若静止流体表面处的压强为P。(通常即为与该流体表面相接触的气体的压强),流体的密度为,则此流体表面下深度为h处的压强为

由上式可见,在静止流体内部高度差为的两点间的压强差为

试题详情

1.6.3、稳度

物体稳定的程度叫稳度,一般说来,使一个物体的平衡遭到破坏所需的能量越多,这个平衡的稳度就越高。稳度与重心的高度及支面的大小有关,重心越低,支面越大,稳度越大。

§1.7    流体静力学

流体并没有一定的开头可以自由流动,但具有一定的密度,一般认为理想流体具有不可压缩的特征。

试题详情

1.6.2、物体平衡的种类

物体的平衡分为三类:

稳定平衡   处于平衡状态的物体,当受到外界的扰动而偏离平衡位置时,如果外力或外力矩促使物体回到原平衡位置,这样的平衡叫稳定平衡,处于稳定平衡的物体,偏离平衡位置时,重心一般是升高的。

不稳定平衡  处于平衡状态的物体,当受到外界的扰动而偏离平衡位置时,如果外力或外力矩促使物体偏离原来的平衡位置,这样的平衡叫不稳定平衡,处于不稳定平衡的物体,偏离平衡位置时,重心一般是降低的。

随遇平衡   处于平衡状态的物体,当受到外界扰动而偏离平衡位置时,物体受到的合外力或合力矩没有变化,这样的平衡叫随遇平衡,处于随遇平衡的物体,偏离平衡位置后,重心高度不变。

在平动方面,物体不同方面上可以处于不同的平衡状态,在转动方面,对不同方向的转轴可以处于不同的平衡状态。例如,一个位于光滑水平面上的直管底部的质点,受到平行于管轴方向的扰动时,处于随遇平衡状态;受到与轴垂直方向的扰动时,处于稳定平衡状态,一细棒,当它直立于水平桌面时,是不稳定平衡,当它平放在水平桌面时,是随遇平衡。

试题详情

1.6.1、重心

物体的重心即重力的作用点。在重力加速度为常矢量的区域,物体的重心是惟一的(我们讨论的都是这种情形),重心也就是物体各部分所受重力的合力的作用点,由于重力与质量成正比,重力合力的作用点即为质心,即重心与质心重合。

求重心,也就是求一组平行力的合力作用点。相距L,质量分别为的两个质点构成的质点组,其重心在两质点的连线上,且与相距分别为:

 

 

均匀规则形状的物体,其重心在它的几何中心,求一般物体的重心,常用的方法是将物体分割成若干个重心容易确定的部分后,再用求同向平行力合力的方法找出其重心。

物体重心(或质心)位置的求法

我们可以利用力矩和为零的平衡条件来求物体的重心位置。如图1-6-1由重量分别为的两均匀圆球和重量为的均匀杆连成的系统,设立如图坐标系,原点取在A球最左侧点,两球与杆的重心的坐标分别为,系统重心在P点,我们现在求其坐标x。设想在P处给一支持力R,令达到平衡时有:

这样就得出了如图所示的系统的重心坐标。若有多个物体组成的系统,我们不难证明其重心位置为:

一般来说,物体的质心位置与重心位置重合,由上面公式很易得到质心位置公式:

如图1-6-2,有5个外形完全一样的均匀金属棒首尾相接焊在一起,从左至右其密度分别为ρ、⒈1ρ、⒈2ρ、⒈3ρ、⒈4ρ,设每根棒长均为,求其质心位置,若为n段,密度仍如上递增,质心位置又在什么地方?

解:设整个棒重心离最左端距离为x,则由求质心公式有

若为n段,按上式递推得:

将坐标原点移到第一段棒的重心上,则上式化为:

例、如图1-6-3所示,A、B原为两个相同的均质实心球,半径为R,重量为G,A、B球分别挖去半径为的小球,均质杆重量为,长度,试求系统的重心位置。

解:将挖去部份的重力,用等值、反向的力取代,图示系统可简化为图1-1-31所示平行力系;其中

。设重心位置为O,则合力

  OC=0.53R

试题详情

1.4.3、有固定转动轴物体的平衡

有固定转轴的物体,若处于平衡状态,作用于物体上各力的力矩的代数和为零。

§1.5  一般物体的平衡

力对物体的作用可以改变物体的运动状态,物体各部位所受力的合力对物体的平动有影响,合力矩对物体的转动有影响。如果两种影响都没有,就称物体处于平衡状态。因此,一般物体处于平衡时,要求物体所受合外力为零和合力矩为零同时满足,一般物体的平衡条件写成分量式为

分别为对x轴、y轴、z轴的力矩。

由空间一般力系的平衡方程,去掉由力系的几何性质能自动满足的平衡方程,容易导出各种特殊力系的独立平衡方程。

如平面力系(设在平面内),则自动满足,则独立的平衡方程为:

这一方程中的转轴可根据需要任意选取,一般原则是使尽量多的力的力臂为零。

平面汇交力系与平面平行力系的独立方程均为二个,空间汇交力系和空间平行力系的独立平衡方程均为三个。

§1.6  平衡的稳定性

试题详情

1.4.2、力偶和力偶矩

一对大小相等、方向相反但不共线的力称为力偶。如图1-4-2中即为力偶,力偶不能合成为一个力,是一个基本力学量。对于与力偶所在平面垂直的任一轴,这一对力的力矩的代数和称为力偶矩,注意到,不难得到,M=Fd,式中d为两力间的距离。力偶矩与所相对的轴无关。

试题详情

1.4.1、力矩

力的三要素是大小、方向和作用点。由作用点和力的方向所确定的射线称为力的作用线。力作用于物体,常能使物体发生转动,这时外力的作用效果不仅取决于外力的大小和方向,而且取决于外力作用线与轴的距离--力臂(d)。

力与力臂的乘积称为力矩,记为M,则M=Fd,如图1-4-1,O为垂直于纸面的固定轴,力F在纸面内。

力矩是改变物体转动状态的原因。力的作用线与轴平行时,此力对物体绕该轴转动没有作用。若力F不在与轴垂直的平面内,可先将力分解为垂直于轴的分量F⊥和平行于轴的分量F∥,F∥对转动不起作用,这时力F的力矩为M=F⊥d。

通常规定 绕逆时方向转动的力矩为正。当物体受到多个力作用时,物体所受的总力矩等于各个力产生力矩的代数和。

试题详情

1.3.2、推论

物体在n(n≥3)个外力作用下处于平衡状态,若其中有n-1个力为共点力,即它们的作用线交于O点,则最后一个外力的作用线也必过O点,整个外力组必为共点力。这是因为n-1个外力构成的力组为共点(O点)力,这n-1个的合力必过O点,最后一个外力与这n-1个外力的合力平衡,其作用线必过O点。

特例,物体在作用线共面的三个非平行力作用下处于平衡状态时,这三个力的作用线必相交于一点且一定共面。

§1.4   固定转动轴物体的平衡

试题详情

1.3.1、共点力作用下物体的平衡条件

几个力如果都作用在物体的同一点,或者它们的作用线相交于同一点,这几个力叫作共点力。当物体可视为质点时,作用在其上的力都可视为共点力。当物体不能视为质点时,作用于其上的力是否可视为共点力要看具体情况而定。

物体的平衡包括静平衡与动平衡,具体是指物体处于静止、匀速直线运动和匀速转动这三种平衡状态。

共点力作用下物体的平衡条件是;物体所受到的力的合力为零。

或其分量式:

如果在三个或三个以上的共点力作用下物体处于平衡,用力的图示表示,则这些力必组成首尾相接的闭合力矢三角形或多边形;力系中的任一个力必与其余所有力的合力平衡;如果物体只在两个力作用下平衡,则此二力必大小相等、方向相反、且在同一条直线上,我们常称为一对平衡力;如果物体在三个力作用下平衡,则此三力一定共点、一定在同一个平面内,如图1-3-1所示,且满足下式(拉密定理):

试题详情

1.2.4、空间中力的投影与分解

力在某轴上的投影定义为力的大小乘以力与该轴正向间夹角的余弦,如图1-2-5中的力在ox、oy、oz轴上的投影X、Y、Z分别定义为

这就是直接投影法所得结果,也可如图1-2-6所示采用二次投影法。这时

式中在oxy平面上的投影矢量,而

力沿直角坐标轴的分解式

§1.3共点力作用下物体的平衡

试题详情


同步练习册答案