17(本小题满分10分)
设
的内角
、
、
的对边长分别为
、
、
,
,
,求
。
分析:由
,易想到先将
代入
得
。然后利用两角和与差的余弦公式展开得
;又由
,利用正弦定理进行边角互化,得
,进而得
.故
。大部分考生做到这里忽略了检验,事实上,当
时,由
,进而得
,矛盾,应舍去。
也可利用若
则
从而舍去
。不过这种方法学生不易想到。
评析:本小题考生得分易,但得满分难。
18(本小题满分12分)
如图,直三棱柱
中,
、
分别为
、
的中点,
平面
(I)证明:![]()
(II)设二面角
为60°,求
与平面
所成的角的大小。
(I)分析一:连结BE,
为直三棱柱, ![]()
为
的中点,
。又
平面
,
(射影相等的两条斜线段相等)而
平面
,
(相等的斜线段的射影相等)。
分析二:取
的中点
,证四边形
为平行四边形,进而证
∥
,
,得
也可。
分析三:利用空间向量的方法。具体解法略。
(II)分析一:求
与平面
所成的线面角,只需求点
到面
的距离即可。
作
于
,连
,则
,
为二面角
的平面角,
.不妨设
,则
.在
中,由
,易得
.
设点
到面
的距离为
,
与平面
所成的角为
。利用
,可求得![]()
,又可求得
![]()
即
与平面
所成的角为![]()
分析二:作出
与平面
所成的角再行求解。如图可证得
,所以面
。由分析一易知:四边形
为正方形,连
,并设交点为
,则
,
为
在面
内的射影。
。以下略。
分析三:利用空间向量的方法求出面
的法向量
,则
与平面
所成的角即为
与法向量
的夹角的余角。具体解法详见高考试题参考答案。
总之在目前,立体几何中的两种主要的处理方法:传统方法与向量的方法仍处于各自半壁江山的状况。命题人在这里一定会兼顾双方的利益。
19(本小题满分12分)
设数列
的前
项和为
已知![]()
![]()
(I)设
,证明数列
是等比数列
(II)求数列
的通项公式。
解:(I)由
及
,有![]()
![]()
由
,...① 则当
时,有
.....②
②-①得![]()
又
,![]()
是首项
,公比为2的等比数列.
(II)由(I)可得
,![]()
数列
是首项为
,公差为
的等比数列.
![]()
,
评析:第(I)问思路明确,只需利用已知条件寻找
.
第(II)问中由(I)易得
,这个递推式明显是一个构造新数列的模型:
,主要的处理手段是两边除以
.
总体来说,09年高考理科数学全国I、Ⅱ这两套试题都将数列题前置,主要考查构造新数列(全国I还考查了利用错位相减法求前n项和的方法),一改往年的将数列结合不等式放缩法问题作为押轴题的命题模式。具有让考生和一线教师重视教材和基础知识、基本方法基本技能,重视两纲的导向作用。也可看出命题人在有意识降低难度和求变的良苦用心。
20(本小题满分12分)
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核。
(I)求从甲、乙两组各抽取的人数;
(II)求从甲组抽取的工人中恰有1名女工人的概率;
(III)记
表示抽取的3名工人中男工人数,求
的分布列及数学期望。
分析:(I)这一问较简单,关键是把握题意,理解分层抽样的原理即可。另外要注意此分层抽样与性别无关。
(II)在第一问的基础上,这一问处理起来也并不困难。
从甲组抽取的工人中恰有1名女工人的概率![]()
(III)
的可能取值为0,1,2,3
,
,
,![]()
分布列及期望略。
评析:本题较常规,比08年的概率统计题要容易。在计算
时,采用分类的方法,用直接法也可,但较繁琐,考生应增强灵活变通的能力。
(21)(本小题满分12分)
已知椭圆
的离心率为
,过右焦点F的直线
与
相交于
、
两点,当
的斜率为1时,坐标原点
到
的距离为
(I)求
,
的值;
(II)
上是否存在点P,使得当
绕F转到某一位置时,有
成立?
若存在,求出所有的P的坐标与
的方程;若不存在,说明理由。
解:(I)设
,直线
,由坐标原点
到
的距离为![]()
则
,解得
.又
.
(II)由(I)知椭圆的方程为
.设
、![]()
![]()
由题意知
的斜率为一定不为0,故不妨设 ![]()
代入椭圆的方程中整理得
,显然
。
由韦达定理有:![]()
........①
.假设存在点P,使
成立,则其充要条件为:
点
,点P在椭圆上,即
。
整理得
。
又
在椭圆上,即
.
故
................................②
将
及①代入②解得![]()
,
=
,即
.
当
;
当
.
评析:处理解析几何题,学生主要是在“算”上的功夫不够。所谓“算”,主要讲的是算理和算法。算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质。有时候算理和算法并不是截然区分的。例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点。
22.(本小题满分12分)
设函数
有两个极值点
,且![]()
(I)求
的取值范围,并讨论
的单调性;
(II)证明:
解: (I)![]()
令
,其对称轴为
。由题意知
是方程
的两个均大于
的不相等的实根,其充要条件为
,得![]()
⑴当
时,
在
内为增函数;
⑵当
时,
在
内为减函数;
⑶当
时,
在
内为增函数;
(II)由(I)
,![]()
![]()
设
,
则![]()
⑴当
时,
在
单调递增;
⑵当
时,
,
在
单调递减。
![]()
故
.
16. 已知
为圆
:
的两条相互垂直的弦,垂足为
,则四边形
的面积的最大值为
。
解:设圆心
到
的距离分别为
,则
.
四边形
的面积![]()
15.设
是球
的半径,
是
的中点,过
且与
成45°角的平面截球
的表面得到圆
。若圆
的面积等于
,则球
的表面积等于
.
解:设球半径为
,圆
的半径为
,![]()
因为
。由
得
.故球
的表面积等于
.
14. 设等差数列
的前
项和为
,若
则
9 .
解:
为等差数列,![]()
13.
的展开式中
的系数为 6
。
解:
,只需求
展开式中的含
项的系数:
(17)(本小题满分10分)
已知等差数列{
}中,![]()
求{
}前n项和
.
![]()
(18)(本小题满分12分)
设△ABC的内角A、B、C的对边长分别为a、b、c,
,
,求B.
(19)(本小题满分12分)
![]()
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(Ⅰ)证明:AB=AC
![]()
(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小
(20)(本小题满分12分)
某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人。现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核。
(Ⅰ)求从甲、乙两组各抽取的人数;
(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;
(Ⅲ)求抽取的4名工人中恰有2名男工人的概率。
![]()
(21)(本小题满分12分)
|
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围。
![]()
(22)(本小题满分12分)
|
|
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有
成立?
若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。
2009年普通高等学校招生全国统一考试
(13)设等比数列{
}的前n项和为
。若
,则
=
×
(14)
的展开式中
的系数为 ×
![]()
(15)已知圆O:
和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于 ×
(16)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C。若圆C的面积等于
,则球O的表面积等于 ×
(1)已知全集U={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则Cu( M
N)=
(A) {5,7} (B) {2,4} (C){2.4.8} (D){1,3,5,6,7}
(2)函数y=
(x
0)的反函数是
(A)
(x
0)
(B)
(x
0)
(B)
(x
0)
(D)
(x
0)
(3)
函数y=
的图像
(A)
关于原点对称
(B)关于主线
对称
(C)
关于
轴对称
(D)关于直线
对称
(4)已知△ABC中,
,则![]()
(A)
(B)
(C)
(D) ![]()
(5)
已知正四棱柱
中,
=
,
为
重点,则异面直线![]()
与
所形成角的余弦值为
(A)
(B)
(C)
(D)
![]()
(6)
已知向量a = (2,1), a·b = 10,︱a + b ︱=
,则︱b ︱=
(A)
(B)
(C)5 (D)25
(7)设
则
(A)
(B)
(C)
(D)![]()
(8)双曲线
的渐近线与圆
相切,则r=
(A)
(B)2 (C)3 (D)6
(9)若将函数
的图像向右平移
个单位长度后,与函数
的图像重合,则
的最小值为
(A)
(B)
(C)
(D)
![]()
(10)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有
(A)6种 (B)12种 (C)24种 (D)30种
(11)已知直线
与抛物线C:
相交A、B两点,F为C的焦点。若
,则k=
(A)
(B)
(C)
(D)![]()
(12)纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是
(A)南 (B)北 (C)西 (D)下
![]()
第Ⅱ卷(非选择题)
本卷共10小题,共90分。
(17)(本小题满分10分)(注意:在试题卷上作答无效)
设等差数列{
}的前
项和为
,公比是正数的等比数列{
}的前
项和为
,
已知
的通项公式.
[解析]本小题考查等差数列与等比数列的通项公式、前
项和,基础题。
解:设
的公差为
,数列
的公比为
,由题得
解得![]()
∴
。
(18)(本小题满分12分)(注意:在试用题卷上作答无效)
在
中,内角A、b、c的对边长分别为a、b、c.已知
,且
,求b.
[解析]本小题考查正弦定理、余弦定理。
解:由余弦定理得
,
∵
,
∴
,即
。
由正弦定理及
得
,
∴
,即
。
(19)(本小题满分12分)(注决:在试题卷上作答无效)
如图,四棱锥
中,底面
为矩形,
底面
,
,
,点
在侧棱
上,
。
(I)证明:
是侧棱
的中点;
求二面角
的大小。(同理18)
[解析]本小题考查空间里的线线关系、二面角,综合题。
(I)解法一:作
∥
交
于N,作
交
于E,
连ME、NB,则
面
,
,![]()
设
,则
,
在
中,![]()
![]()
。
在
中由![]()
![]()
解得
,从而![]()
M为侧棱
的中点M.
解法二:过
作
的平行线.
(II)分析一:利用三垂线定理求解。在新教材中弱化了三垂线定理。这两年高考中求二面角也基本上不用三垂线定理的方法求作二面角。
过
作
∥
交
于
,作
交
于
,作
交
于
,则
∥
,
面
,面![]()
面
,
面![]()
![]()
即为所求二面角的补角.
法二:利用二面角的定义。在等边三角形
中过点
作
交
于点
,则点
为AM的中点,取SA的中点G,连GF,易证
,则
即为所求二面角.
解法二、分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D-xyz,则
。
(Ⅰ)设
,则
,
,由题得
,即
解之个方程组得
即![]()
所以
是侧棱
的中点。 ![]()
法2:设
,则![]()
又![]()
故
,即
,解得
,
所以
是侧棱
的中点。
(Ⅱ)由(Ⅰ)得
,又
,
,
设
分别是平面
、
的法向量,则
且
,即
且![]()
分别令
得
,即
,
∴
![]()
二面角
的大小
。
(20)(本小题满分12分)(注意:在试题卷上作答无效)
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)求甲获得这次比赛胜利的概率。
[解析]本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,综合题。
解:记“第
局甲获胜”为事件
,“第
局甲获胜”为事件
。
(Ⅰ)设“再赛2局结束这次比赛”为事件A,则
,由于各局比赛结果相互独立,故
![]()
。
(Ⅱ)记“甲获得这次比赛胜利”为事件B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而
,由于各局比赛结果相互独立,故
![]()
![]()
(21)(本小题满分12分)(注意:在试题卷上作答无效) ![]()
已知函数
.
(Ⅰ)讨论
的单调性;
(Ⅱ)设点P在曲线
上,若该曲线在点P处的切线
通过坐标原点,求
的方程
[解析]本小题考查导数的应用、函数的单调性,综合题。
解:(Ⅰ)![]()
令
得
或
;
令
得
或![]()
因此,
在区间
和
为增函数;在区间
和
为减函数。
(Ⅱ)设点
,由
过原点知,
的方程为
,
因此
,即
,整理得
,解得
或
。
所以的方程为
或
![]()
(22)(本小题满分12分)(注意:在试题卷上作答无效)
如图,已知抛物线![]()
与圆
相交于A、B、C、D四个点。
(Ⅰ)求r的取值范围
(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标。
解:(Ⅰ)将抛物线
代入圆
的方程,消去
,整理得
.............(1)
抛物线
与圆
相交于
、
、
、
四个点的充要条件是:方程(1)有两个不相等的正根
∴
即
。解这个方程组得![]()
.
(II) 设四个交点的坐标分别为
、
、
、
。
则由(I)根据韦达定理有
,![]()
则![]()
令
,则
下面求
的最大值。
方法1:由三次均值有:
![]()
![]()
当且仅当
,即
时取最大值。经检验此时
满足题意。
法2:设四个交点的坐标分别为
、
、
、![]()
则直线AC、BD的方程分别为
![]()
解得点P的坐标为
。
设
,由
及(Ⅰ)得
![]()
由于四边形ABCD为等腰梯形,因而其面积![]()
则
将
,
代入上式,并令
,等
,
∴
,
令
得
,或
(舍去)
当
时,
;当
时
;当
时,![]()
故当且仅当
时,
有最大值,即四边形ABCD的面积最大,故所求的点P的坐标为
。
(注意:在试题卷上作答无效)
(13)
的展开式中,
的系数与
的系数之和等于_____________.
[解析]本小题考查二项展开式通项、基础题。(同理13)
解: 因
所以有
w.w.w.k.s.5.u.c。
(14)设等差数列
的前
项和为
。若
,则
_______________.
[解析]本小题考查等差数列的性质、前
项和,基础题。(同理14)
解:
是等差数列,由
,得![]()
![]()
![]()
。
(15)已知
为球
的半径,过
的中点
且垂直于
的平面截球面得到圆
,若圆
的面积为
,则球
的表面积等于__________________.
[解析]本小题考查球的截面圆性质、球的表面积,基础题。
解:设球半径为
,圆M的半径为
,则
,即
由题得
,所以
。
(16)若直线
被两平行线
所截得的线段的长为
,则
的倾斜角可以是
①
②
③
④
⑤
![]()
其中正确答案的序号是 .(写出所有正确答案的序号)
[解析]本小题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想。
解:两平行线间的距离为
,由图知直线
与
的夹角为
,
的倾斜角为
,所以直线
的倾斜角等于
或
。故填写①或⑤
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com