分析反应原理:
1.二氧化氮跟水反应:3NO2+H2O=2HNO3+NO
[演示实验]二氧化氮跟水反应。装置如下图所示(一支10mL量筒)。
(1)轻轻摇动量筒,观察现象(水位逐渐上升,红棕色逐渐变浅)。
(2)用大拇指按住量筒口,取出量筒倒转振荡,再插入水中,观察现象。(水位迅速上升至量筒容积约
,剩余
体积的无色气体)。
(3)将量筒口用橡胶塞塞住,从水中取出量筒,往量筒中滴入紫色石蕊试液,观察现象(溶液变红)。
通过以上实验的分析引出下列问题。
|
级数的概念及其性质 |
|
我们在中学里已经遇到过级数--等差数列与等比数列,它们都属于项数为有限的特殊情形。下面我们来学习项数为无限的级数,称为无穷级数。
无穷级数的概念
设已给数列a1,a2,…,an,…把数列中各项依次用加号连接起来的式子a1+a2+…+an+…称为无穷级数,简称级数.记作: 1.级数收敛的必要条件:收敛的级数 |
|
正项级数的收敛问题 |
|
对于一个级数,我们一般会提出这样两个问题:它是不是收敛的?它的和是多少?显然第一个问题是更重要的,因为如果级数是发散的,那末第二个问题就不存在了。下面我们来学习如何确定级数的收敛和发散问题。
我们先来考虑正项级数(即每一项an≥0的级数)的收敛问题。
判定正项级数敛散性的基本定理
定理:正项级数 |
|
一般常数项级数的审敛准则 |
|
当级数中的正数项与负数项均为无穷多时,就称级数为一般常数项级数.
绝对收敛与条件收敛
设有一般常数项级数
|
|
函数项级数、幂级数 |
|
在自然科学与工程技术中运用级数这一工具时,经常用到不是常数项的级数,而是函数项的级数.而常数项级数是研究函数项级数的基础。
函数项级数的概念
设有函数序列, |
|
函数的幂级数展开式 |
|
通过前面的学习我们看到,幂级数不仅形式简单,而且有一些与多项式类似的性质。而且我们还发现有一些可以表示成幂级数。为此我们有了下面两个问题:
问题1:函数f(x)在什么条件下可以表示成幂级数 |
|
微分方程的基本概念 |
|
在许多科技领域里,常会遇到这样的问题:
某个函数是怎样的并不知道,但根据科技领域的普遍规律,却可以知道这个未知函数及其导数与自变量之间会满足某种关系。下面我们先来看一个例子:
例题:已知一条曲线过点(1,2),且在该直线上任意点P(x,y)处的切线斜率为2x,求这条曲线方程
解答:设所求曲线的方程为y=y(x),我们根据导数的几何意义,可知y=y(x)应满足方程:
|
|
可分离变量的微分方程与齐次方程 |
|
下面我们来学习用积分法解一阶微分方程的问题。
并不是所有的一阶微分方程都可以用积分法求解,只有一些特殊形式的一阶微分方程可以用积分法求解,并且解法也各不相同。因此,我们学习时要认清各种微分方程的特点及它们的解法。
可分离变量的微分方程
这种方程的形式为: |
|
线性微分方程 |
|
线性微分方程
这种微分方程的形式为: |
|
可降阶的高阶方程 |
|
求解高阶微分方程的方法之一是设法降低方程的阶数。下面我们以二阶方程为例来学习三种可以降阶的方程。
1.右端仅含x的方程:y"=f(x)
对这类方程,只须两端分别积分一次就可化为一阶方程
|
|
线性微分方程解的结构 |
|
我们以二阶方程为例来说明线性方程解的结构,当然这些结论也适合于高阶线性微分方程。
二阶线性方程的一般形式为
|
|
二阶常系数齐次线性方程的解法 |
|
前面我们已经知道了,无论是线性齐次方程和非齐次方程,它们的通解结构虽然知道,但通解的寻求却是建立在已知特解的基础上。但是,即使对二阶线性齐次方程,特解的寻求也没有一般的方法。但是对于常系数的二阶线性齐次方程,它的通解可按一定的方法很容易求的。
二阶线性齐次方程的解法
二阶线性齐次方程的一般形式为: |
|
二阶常系数非齐次线性方程的解法 |
|
我们来学习二阶常系数线性非齐次方程 |
|
二重积分的概念及性质 |
|
前面我们已经知道了,定积分与曲边梯形的面积有关。下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。
二重积分的定义
设z=f(x,y)为有界闭区域(σ)上的有界函数:
(1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n);
(2)在每一个子域(△σk)上任取一点 |
|
二重积分的计算法 |
|
直角坐标系中的计算方法
这里我们采取的方法是累次积分法。也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。为此我们有积分公式,如下:
|
|
三重积分及其计算法 |
|
二重积分的被积函数是一个二元函数,它的积分域是-平面区域.如果考虑三元函数f(x,y,z)在一空间区域(V)上的积分,就可得到三重积分的概念。
三重积分的概念
设函数u=f(x,y,z)在空间有界闭区域(V)任意划分成n个子域(△V1),(△V2),(△V3),…,(△Vn),它们的体积分别记作△Vk(k=1,2,…,n).在每一个子域上任取一点 |
|
多元函数的概念 |
|||||||||
|
我们前面所学的函数的自变量的个数都是一个,但是在实际问题中,所涉及的函数的自变量的个数往往是两个,或者更多。
例:一个圆柱体的体积 |
|||||||||
|
二元函数的极限及其连续性 |
|||||||||
|
在一元函数中,我们曾学习过当自变量趋向于有限值时函数的极限。对于二元函数z=f(x,y)我们同样可以学习当自变量x与y趋向于有限值ξ与η时,函数z的变化状态。
在平面xOy上,(x,y)趋向(ξ,η)的方式可以时多种多样的,因此二元函数的情况要比一元函数复杂得多。如果当点(x,y)以任意方式趋向点(ξ,η)时,f(x,y)总是趋向于一个确定的常数A,
那末就称A是二元函数f(x,y)当(x,y)→(ξ,η)时的极限。
这种极限通常称为二重极限。
下面我们用ε-δ语言给出二重极限的严格定义:
二重极限的定义
如果定义于(ξ,η)的某一去心邻域的一个二元函数f(x,y)跟一个确定的常数A有如下关系:对于任意给定的正数ε,无论怎样小,相应的必有另一个正数δ,凡是满足
|
|||||||||
|
偏导数 |
|||||||||
|
在一元函数中,我们已经知道导数就是函数的变化率。对于二元函数我们同样要研究它的"变化率"。然而,由于自变量多了一个,情况就要复杂的多.在xOy平面内,当变点由(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来时不同的,因此就需要研究f(x,y)在(x0,y0)点处沿不同方向的变化率。
在这里我们只学习(x,y)沿着平行于x轴和平行于y轴两个特殊方位变动时f(x,y)的变化率。
偏导数的定义
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数
z=f(x,y)有增量(称为对x的偏增量)
△xz=f(x0+△x)-f(x0,y0).
如果△xz与△x之比当△x→0时的极限
|
|||||||||
|
全微分 |
|||||||||
|
我们已经学习了一元函数的微分的概念了,现在我们用类似的思想方法来学习多元函数的的全增量,从而把微分的概念推广到多元函数。
这里我们以二元函数为例。
全微分的定义
函数z=f(x,y)的两个偏导数f'x(x,y),f'y(x,y)分别与自变量的增量△x,△y乘积之和
f'x(x,y)△x+f'y(x,y)△y
若该表达式与函数的全增量△z之差,
当ρ→0时,是ρ( |
|||||||||
|
多元复合函数的求导法 |
|||||||||
|
在一元函数中,我们已经知道,复合函数的求导公式在求导法中所起的重要作用,对于多元函数来说也是如此。下面我们来学习多元函数的复合函数的求导公式。我们先以二元函数为例:
多元复合函数的求导公式
链导公式:
设 |
|||||||||
|
多元函数的极值 |
|||||||||
在一元函数中我们看到,利用函数的导数可以求得函数的极值,从而可以解决一些最大、最小值的应用问题。多元函数也有类似的问题,这里我们只学习二元函数的极值问题。
二元函数极值的定义
如果在(x0,y0)的某一去心邻域内的一切点(x,y)恒有等式:
f(x,y)≤f(x0,y0)
成立,那末就称函数f(x,y)在点(x0,y0)处取得极大值f(x0,y0);如果恒有等式:
f(x,y)≥f(x0,y0)
成立,那末就称函数f(x,y)在点(x0,y0)处取得极小值f(x0,y0).
极大值与极小值统称极值.使函数取得极值的点(x0,y0)称为极值点.
二元可导函数在(x0,y0)取得极值的条件是:
|
|||||||||
|
其中 |
|
空间直角坐标系 |
||||||||||||
|
空间点的直角坐标系
为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。
过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示)
|
||||||||||||
|
方向余弦与方向数 |
||||||||||||
|
解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。
方向角与方向余弦
设有空间两点 |
||||||||||||
|
平面与空间直线 |
||||||||||||
|
平面及其方程
我们把与一平面垂直的任一直线称为此平面的法线。
设给定点为Po(x0,y0,z0),给定法线n的一组方向数为{A,B,C}A2+B2+C2≠0,则过此定点且以n为法线的平面方程可表示为:
|
||||||||||||
|
曲面与空间曲线 |
||||||||||||
曲面的方程
我们知道,在平面解析几何中可把曲线看成是动点的轨迹.因此,在空间中曲面可看成是一个动点或一条动曲线(直线)按一定的条件或规律运动而产生的轨迹。
设曲面上动点P的坐标为(x,y,z),由这一条件或规律就能导出一个含有变量x,y,z的方程:
|
|
定积分的概念 |
|
我们先来看一个实际问题---求曲边梯形的面积。
设曲边梯形是有连续曲线y=f(x)、x轴与直线x=a、x=b所围成。如下图所示:
|
|
微积分积分公式 |
|
积分上限的函数及其导数 设函数f(x)在区间[a,b]上连续,并且设x为[a,b]上的一点.现在我们来考察f(x)在部分区间[a,x]上的定积分 牛顿--莱布尼兹公式 定理(3):如果函数F(x)是连续函数f(x)在区间[a,b]上的一个原函数,则 |
|
定积分的换元法与分部积分法 |
|
定积分的换元法
我们知道求定积分可以转化为求原函数的增量,在前面我们又知道用换元法可以求出一些函数的原函数。因此,在一定条件下,可以用换元法来计算定积分。
定理:设函数f(x)在区间[a,b]上连续;函数g(t)在区间[m,n]上是单值的且有连续导数;当t在区间[m,n]上变化时,x=g(t)的值在[a,b]上变化,且g(m)=a,g(n)=b;则有定积分的换元公式:
|
|
广义积分 |
|
在一些实际问题中,我们常遇到积分区间为无穷区间,或者被积函数在积分区间上具有无穷间断点的积分,它们已不属于前面我们所学习的定积分了。为此我们对定积分加以推广,也就是---广义积分。
一:积分区间为无穷区间的广义积分
设函数f(x)在区间[a,+∞)上连续,取b>a.如果极限
|
|
二:积分区间有无穷间断点的广义积分
设函数f(x)在(a,b]上连续,而 |
|
不定积分的概念 |
|
原函数的概念
已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间内的任一点都有
dF'(x)=f(x)dx,
则在该区间内就称函数F(x)为函数f(x)的原函数。
例:sinx是cosx的原函数。
关于原函数的问题
函数f(x)满足什么条件是,才保证其原函数一定存在呢?这个问题我们以后来解决。若其存在原函数,那末原函数一共有多少个呢?
我们可以明显的看出来:若函数F(x)为函数f(x)的原函数,
即:F"(x)=f(x),
则函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,
故:若函数f(x)有原函数,那末其原函数为无穷多个.
不定积分的概念
函数f(x)的全体原函数叫做函数f(x)的不定积分,
记作 |
|
求不定积分的方法 |
|
换元法
换元法(一):设f(u)具有原函数F(u),u=g(x)可导,那末F[g(x)]是f[g(x)]g'(x)的原函数.
即有换元公式: |
|
几种特殊类型函数的积分举例 |
|
有理函数的积分举例
有理函数是指两个多项式的商所表示的函数,当分子的最高项的次数大于分母最高项的次数时称之为假分式,
反之为真分式。
在求有理函数的不定积分时,若有理函数为假分式应先利用多项式的除法,把一个假分式化成一个多项式和一个真分式之和的形式,然后再求之。
例题:求 |
|
微分学中值定理 |
|
在给出微分学中值定理的数学定义之前,我们先从几何的角度看一个问题,如下: |
|
设有连续函数 |
|
拉格朗日中值定理
如果函数 |
|
这个定理的特殊情形,即: |
|
下面我们在学习一条通过拉格朗日中值定理推广得来的定理--柯西中值定理
柯西中值定理
如果函数 |
|
例题:证明方程 |
|
未定式问题 |
|
问题:什么样的式子称作未定式呢?
答案:对于函数 |
|
我们容易知道,对于未定式的极限求法,是不能应用"商的极限等于极限的商"这个法则来求解的,那么我们该如何求这类问题的极限呢?
下面我们来学习罗彼塔(L'Hospital)法则,它就是这个问题的答案
注:它是根据柯西中值定理推出来的。 |
|
罗彼塔(L'Hospital)法则
当x→a(或x→∞)时,函数 |
|
例题:求 |
|
例题:求 |
|
另外,若遇到 |
|
例题:求 |
|
注:罗彼塔法则只是说明:对未定式来说,当 |
|
函数单调性的判定法 |
|
函数的单调性也就是函数的增减性,怎样才能判断函数的增减性呢?
我们知道若函数在某区间上单调增(或减),则在此区间内函数图形上切线的斜率均为正(或负),也就是函数的导数在此区间上均取正值(或负值).因此我们可通过判定函数导数的正负来判定函数的增减性. |
|
判定方法:
设函数 |
|
例题:确定函数 |
|
函数的极值及其求法
|
|
在学习函数的极值之前,我们先来看一例子:
设有函数 |
|
函数极值的定义
设函数 |
|
方法一:
设函数 |
|
例题:求 |
|
方法二:
设函数 |
|
例题:我们仍以例1为例,以比较这两种方法的区别。
解答:上面我们已求出了此函数的驻点,下面我们再来求它的二阶导数。
|
|
函数的最大值、最小值及其应用 |
|
在工农业生产、工程技术及科学实验中,常会遇到这样一类问题:在一定条件下,怎样使"产品最多"、"用料最省"、"成本最低"等。
这类问题在数学上可归结为求某一函数的最大值、最小值的问题。
怎样求函数的最大值、最小值呢?前面我们已经知道了,函数的极值是局部的。要求 |
|
例题:求函数 |
|
例题:圆柱形罐头,高度H与半径R应怎样配,使同样容积下材料最省?
解答:由题意可知: |
|
曲线的凹向与拐点 |
|
通过前面的学习,我们知道由一阶导数的正负,可以判定出函数的单调区间与极值,但是还不能进一步研究曲线的性态,为此我们还要了解曲线的凹性。
定义:
对区间I的曲线 |
|
曲线凹向的判定定理
定理一:设函数 |
|
例题:判断函数 |
|
拐点的定义
连续函数上,上凹弧与下凹弧的分界点称为此曲线上的拐点。 |
|
拐定的判定方法
如果 |
|
例题:求曲线 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com