例1:图1中重物的质量为m,轻细线AO和BO的A、B端是固定的。平衡时AO是水平的,BO与水平面的夹角为θ。AO的拉力F1和BO的拉力F2的大小是( )
A.
B.
![]()
C.
D.
![]()
![]()
图1
解析:以“结点”O为研究对象,沿水平、竖直方向建立坐标系,在水平方向有
竖直方向有
联立求解得BD正确。
思考:若题中三段细绳不可伸长且承受的最大拉力相同,逐渐增加物体的质量m,则最先断的绳是哪根?
例2. (2004年苏州调研)用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。用两根相同的轻弹簧夹着一个质量为2.0kg的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a、b上,其压力大小可直接从传感器的液晶显示屏上读出。现将装置沿运动方向固定在汽车上,传感器b在前,传感器a在后,汽车静止时,传感器a、b的示数均为10N(取
)
![]()
图2
(1)若传感器a的示数为14N、b的示数为6.0N,求此时汽车的加速度大小和方向。
(2)当汽车以怎样的加速度运动时,传感器a的示数为零。
解析:(1)
,![]()
a1的方向向右或向前。
(2)根据题意可知,当左侧弹簧弹力
时,右侧弹簧的弹力![]()
![]()
代入数据得
,方向向左或向后
[模型要点]
弹簧中的力学问题主要是围绕胡克定律
进行的,弹力的大小为变力,因此它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值,我们在处理变速问题时要注意分析物体的动态过程,为了快捷分析,我们可以采用极限方法,但要注意“弹簧可拉可压”的特点而忽略中间突变过程,我们也可以利用弹簧模型的对称性。
[模型演练]
(2005年成都考题)如图3所示,一根轻弹簧上端固定在O点,下端系一个钢球P,球处于静止状态。现对球施加一个方向向右的外力F,吏球缓慢偏移。若外力F方向始终水平,移动中弹簧与竖直方向的夹角
且弹簧的伸长量不超过弹性限度,则下面给出弹簧伸长量x与
的函数关系图象中,最接近的是( )
![]()
图3
![]()
答案:D
例1. 如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。②中弹簧的左端受大小也为F的拉力作用。③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有( )
![]()
① ②
![]()
![]()
③ ④
图1
A.
B.
C.
D.
![]()
解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a为多少,仍然可以得到弹簧两端受力大小相等。由于弹簧弹力
与施加在弹簧上的外力F是作用力与反作用的关系,因此,弹簧的弹力也处处相等,与静止情况没有区别。在题目所述四种情况中,由于弹簧的右端受到大小皆为F的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D。
4. 光学中的对称性
例5. (2005年江苏高考)1801年,托马斯·杨用双缝干涉实验研究了光波的性质。1834年,洛埃利用单面镜同样得到了杨氏干涉的结果(称洛埃镜实验)。
(1)洛埃镜实验的基本装置如图5所示,S为单色光源,M为一平面镜。试用平面镜成像作图法在答题卡上画出S经平面镜反射后的光与直接发出的光在光屏上相交的区域。
![]()
图5
(2)设光源S到平面镜的垂直距离和到光屏的垂直距离分别为a和L,光的波长为
,在光屏上形成干涉条纹。写出相邻两条亮纹(或暗纹)间距离
的表达式。
解析:(1)如图6所示。
![]()
图6
(2)![]()
因为
,所以
。
点评:试题以托马斯·杨的双缝干涉实验为引导,以洛埃镜实验为载体,将平面镜对光的反射与光的干涉综合在一起,考查考生对“一分为二”及干涉过程的理解和对课本知识的迁移能力。
[模型特征]
在研究和解决物理问题时,从对称性的角度去考查过程的物理实质,可以避免繁冗的数学推导,迅速而准确地解决问题。
对称法是从对称性的角度研究、处理物理问题的一种思维方法,有时间和空间上的对称。它表明物理规律在某种变换下具有不变的性质。用这种思维方法来处理问题可以开拓思路,使复杂问题的解决变得简捷。如,一个做匀减速直线运动的物体在至运动停止的过程中,根据运动的对称性,从时间上的反演,就能看作是一个初速度为零的匀加速直线运动,于是便可将初速度为零的匀加速直线运动的规律和特点,用于处理末速度为零的匀减速运动,从而简化解题过程。具体如:竖直上抛运动中的速度对称、时间对称。沿着光滑斜面上滑的物体运动等具有对称性;简谐振动中|v|、|a|、|F|、动势能对称以平衡位置的对称性;光学中的球型对称等,总之物理问题通常有多种不同的解法,利用对称性解题不失为一种科学的思维方法。
利用对称法解题的思路:①领会物理情景,选取研究对象;②在仔细审题的基础上,通过题目的条件、背景、设问,深刻剖析物理现象及过程,建立清晰的物理情景,选取恰当的研究对象如运动的物体、运动的某一过程或某一状态;③透析研究对象的属性、运动特点及规律;④寻找研究对象的对称性特点。⑤利用对称性特点,依物理规律,对题目求解。
[模型演练]
将一测力传感器连接到计算机上就可以测量快速变化的力。图7甲表示小滑块(可视为质点)沿固定的光滑半球形容器内壁在竖直平面的AA'之间来回滑动。A、A'点与O点连线与竖直方向之间夹角相等且都为
,均小于10°,图7乙表示滑块对器壁的压力F随时间t变化的曲线,且图中t=0为滑块从A点开始运动的时刻。试根据力学规律和题中(包括图中)所给的信息,求小滑块的质量、容器的半径及滑块运动过程中的守恒量。(g取10m/s2)
![]()
图7
答案:由图乙得小滑块在A、A'之间做简谐运动的周期
s
由单摆振动周期公式
,得球形容器半径
代入数据,得R=0.1m
在最高点A,有
,式中![]()
在最低点B,有
,式中![]()
从A到B过程中,滑块机械能守恒
![]()
联立解得:
,则m=0.05kg
滑块机械能
![]()
3. 电磁现象中的对称性
例4. (2005年全国高考)如图3所示,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里。许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域。不计重力,不计粒子间的相互影响。下列图中阴影部分表示带电粒子可能经过的区域,其中R=
。哪个图是正确的?( )
![]()
图3
![]()
解析:由于是许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由孔O射入磁场区域。所以,重点是考虑粒子进入磁场的速度方向。
在考虑时,想到速度方向在空间安排上是具有“空间对称性”的,所以,本题就要在分析过程用到对称性。
①当粒子沿垂直MN的方向进入磁场时,由其所受到的“洛伦兹力”的方向可以知道,其作圆周运动的位置在左侧。由“洛伦兹力”公式和圆周运动“向心力”公式可以得到:
,解得R=
。所以,在左侧可能会出现以O为一点的直径为2R的半圆。
②当粒子沿水平向右的方向进入磁场时,其应该在MN的上方作圆周运动,且另外的半圆将会出现在点O的左边。直径也是2R。
③然后,利用对称性,所有可能的轨迹将会涉及到以点O为转动点,以2R为直径从右扫到左的一片区域。即如图4所示。
![]()
图4
2. 静电场中的对称性
例2. (2005上海高考)如图1所示,带电量为+q的点电荷与均匀带电薄板相距为2d,点电荷到带电薄板的垂线通过板的几何中心。若图中b点处产生的电场强度为零,根据对称性,带电薄板在图中b点处产生的电场强度大小为多少,方向如何?(静电力恒量为k)。
![]()
图1
解析:在电场中a点:
![]()
![]()
板上电荷在a、b两点的电场以带电薄板对称,带电薄板在b点产生的场强大小为
,方向水平向左。
点评:题目中要求带电薄板产生的电场,根据中学物理知识仅能直接求点电荷产生的电场,无法直接求带电薄板产生的电场;由Ea=0,可以联想到求处于静电平衡状态的导体的感应电荷产生的场强的方法,利用
来间接求出带电薄板在a点的场强,然后根据题意利用对称性求出答案。
例3. 静电透镜是利用静电场使电子束会聚或发散的一种装置,其中某部分静电场的分布如图2所示。虚线表示这个静电场在xOy平面内的一簇等势线,等势线形状相对于Ox轴、Oy轴对称,等势线的电势沿x轴正向增加,且相邻两等势线的电势差相等。一个电子经过P点(其横坐标为
)时,速度与Ox轴平行。适当控制实验条件,使该电子通过电场区域时仅在Ox轴上方运动。在通过电场区域过程中,该电子沿y方向的分速度vy,随位置坐标x变化的示意图是:
![]()
图2
![]()
解析:由于静电场的电场线与等势线垂直,且沿电场线电势依次降低,由此可判断Ox轴上方区域y轴左侧各点的场强方向斜向左上方,y轴右侧各点的场强方向斜向左下方。电子运动过程中,受到的电场力的水平分力沿x轴正方向,与初速方向相同,因此,电子在x方向上的分运动是加速运动,根据空间对称性,电子从x=
运动到
过程中,在y轴左侧运动时间比在y轴右侧运动的时间长。电子受到电场力的竖直分力先沿y轴负方向,后沿y轴正方向。因此电子在y方向上的分运动是先向下加速后向下减速,但由于时间的不对称性,减速时间比加速时间短,所以,当
时,
的方向应沿y轴负方向。正确答案为D。
1. 简谐运动中的对称性
例1. 劲度系数为k的轻质弹簧,下端挂一个质量为m的小球,小球静止时距地面的高度为h,用力向下拉球使球与地面接触,然后从静止释放小球(弹簧始终在弹性限度以内)则:
A. 运动过程中距地面的最大高度为2h
B. 球上升过程中势能不断变小
C. 球距地面高度为h时,速度最大
D. 球在运动中的最大加速度是kh/m
解析:因为球在竖直平面内做简谐运动,球从地面上由静止释放时,先做变加速运动,当离地面距离为h时合力为零,速度最大,然后向上做变减速运动,到达最高点时速度为零,最低点速度为零时距平衡位置为h,利用离平衡位置速度相同的两点位移具有对称性,最高点速度为零时距平衡位置也为h,所以球在运动过程中距地面的最大高度为2h,由于球的振幅为h,由
可得,球在运动过程中的最大加速度为
,球在上升过程中动能先增大后减小,由整个系统机械能守恒可知,系统的势能先减小后增大。所以正确选项为ACD。
2. 如图5甲所示,一对平行放置的金属板M、N的中心各有一小孔P、Q、PQ连线垂直金属板;N板右侧的圆A内分布有方向垂直于纸面向外的匀强磁场,磁感应强度大小为B,圆半径为r,且圆心O在PQ的延长线上。现使置于P处的粒子源连续不断地沿PQ方向放出质量为m、电量为+q的带电粒子(带电粒子的重力和初速度忽略不计,粒子间的相互作用力忽略不计),从某一时刻开始,在板M、N间加上如图5乙所示的交变电压,周期为T,电压大小为U。如果只有在每一个周期的0-T/4时间内放出的带电粒子才能从小孔Q中射出,求:
![]()
甲 乙
图5
(1)在每一个周期内哪段时间放出的带电粒子到达Q孔的速度最大?
(2)该圆形磁场的哪些地方有带电粒子射出,在图中标出有带电粒子射出的区域。
答案:(1)在每一个周期
内放出的带电粒子到达Q孔的速度最大。设最大速度为v,则据动能定理得
,求得
。
(2)因为
解得带电粒子在磁场中的最小偏转角为
。所以图6中斜线部分有带电粒子射出。
![]()
图6
1. (2005年南京调研)如图4所示,在半径为R的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通。两板间距离为d,两板与电动势为U的电源连接,一带电量为
、质量为m的带电粒子(重力忽略不计),开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出。已知带电粒子与筒壁的碰撞无电荷量的损失,且碰撞后以原速率返回。求:
(1)筒内磁场的磁感应强度大小;
(2)带电粒子从A点出发至重新回到A点射出所经历的时间。
![]()
图4
答案:(1)带电粒子从C孔进入,与筒壁碰撞2次再从C孔射出经历的时间为最短。
由![]()
粒子由C孔进入磁场,在磁场中做匀速圆周运动的速率为![]()
由
即
,
得![]()
(2)粒子从A→C的加速度为![]()
由
,粒子从A→C的时间为:
![]()
粒子在磁场中运动的时间为![]()
将(1)求得的B值代入,得
,
求得:![]()
。
2. 匀强电场匀变速;匀强磁场回旋(偏转)
例2. (2006年江苏省泰兴第三高级中学调研)在如图2所示的空间区域里,y轴左方有一匀强电场,场强方向跟y轴正方向成60°,大小为
;y轴右方有一垂直纸面向里的匀强磁场,磁感应强度
。有一质子以速度
,由x轴上的A点(10cm,0)沿与x轴正方向成30°斜向上射入磁场,在磁场中运动一段时间后射入电场,后又回到磁场,经磁场作用后又射入电场。已知质子质量近似为
,电荷
,质子重力不计。求:(计算结果保留3位有效数字)
(1)质子在磁场中做圆周运动的半径。
(2)质子从开始运动到第二次到达y轴所经历的时间。
(3)质子第三次到达y轴的位置坐标。
![]()
图2
解析:(1)质子在磁场中受洛伦兹力做匀速圆周运动,根据牛顿第二定律,
![]()
得质子做匀速圆周运动的半径为:
![]()
(2)由于质子的初速度方向与x轴正方向夹角为30°,且半径恰好等于OA,因此,质子将在磁场中做半个圆周到达y轴上的C点,如答图3所示。
![]()
图3
根据圆周运动的规律,质子做圆周运动周期为![]()
质子从出发运动到第一次到达y轴的时间
为![]()
质子进入电场时的速度方向与电场的方向相同,在电场中先做匀减速直线运动,速度减为零后反向做匀加速直线运动,设质子在电场中运动的时间
,根据牛顿第二定律:
,得
![]()
因此,质子从开始运动到第二次到达y轴的时间t为
。
(3)质子再次进入磁场时,速度的方向与电场的方向相同,在洛伦兹力的作用下做匀速圆周运动,到达y轴的D点。
根据几何关系,可以得出C点到D点的距离为
;
则质子第三次到达y轴的位置为
![]()
即质子第三次到达y轴的坐标为(0,34.6cm)。
评点:由以上几例看到,带电粒子的复杂运动常常是由一些基本运动组合而成的。掌握基本运动的特点是解决这类问题的关键所在。另外我们也要注意近年高考对回旋加速模型考法的一些变化,如环行电场,变化磁场等组合,但不管怎样处理的基本方法不变。
[模型要点]
①带电粒子在两D形盒中回旋周期等于两盒狭缝之间高频电场的变化周期,与带电粒子的速度无关;
②将带电粒子在两盒狭缝之间的运动首尾连起来是一个初速为0的匀加速直线运动;
③带电粒子每经电场加速一次,回旋半径就增大一次,所有经过半径之比为1:
:
……(这可由学生自己证明),对于同一回旋加速器,其粒子回旋的最大半径是相同的,解题时务必引起注意。
电场加速(减速),磁场回旋。磁场回旋时在洛伦兹力作用下做圆周运动有
;电场加速从能角度电场力做功
,动能:
;从力角度若匀强电场还可以用牛顿定律解决。
[模型演练]
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com