7.默写。(8分)
(1)山随平野尽, 。(李白《渡荆门送别》)
(2)春蚕到死丝方尽, 。(李商隐《无题》)
(3) ,西北望,射天狼。(苏轼《江城子·密州出猎》)
(4)李白的《行路难》中最能表现他面对挫折积极向上,对理想执着追求的诗句是:“ , ”。
(5)在学习中如何对待别人的优点和缺点呢?孔子在《<论语>十则》中告诉我们:“ , ”。
(6)随着“京剧进校园”活动的开展,不少同学对国粹京剧很感兴趣,想学唱,但又羞于开口,这时你可用俗语“ , ”鼓励他。
6.名著导读。(2分)
奥斯特洛夫斯基的小说《钢铁是怎样炼成的》最大的成功之处在于塑造了 这一无产阶级英雄形象,在他身上凝聚着那个时代最美好的精神品质: 。
5.根据语境仿写句子。(2分)
青春是美好的。青春是多彩的朝霞,映照着广阔的天地; , ;青春是智慧的火花,点缀着灿烂的星空。
4.请用一句话提取下面这段文字的主要内容。(2分,限15字以内)
今年是建国60周年,也是《湖北日报》创刊60周年。在2月6日至3月15日湖北日报开展的形象人物评选活动中,聂海胜当选湖北日报形象人物。这次旨在以人物彰显媒体品质,以形象凝聚报纸特征的评选活动,得到了广大读者的积极支持。经热心读者手机短信、网络投票等方式推荐,襄樊籍航天英雄聂海胜以其责任、理性、坚毅的品质以及巨大影响力最终脱颖而出。
3.下列句子中加点的成语使用有误的一项是( ) (2分)
A.襄樊以它得天独厚的旅游资源,吸引着众多投资者前来投资开发。
B.十年如一日,无怨无悔、风雨无阻背残疾同学上学的女生张贺婷被评为“2008感动襄樊年度人物”。
C.中华民族富有创新精神,我们要把这种精神当之无愧地传承下去,不断发扬。
D.大自然给我们许多启示:成熟的稻穗低着头,那是在启示我们要谦虚;一群蚂蚁抬走骨头,那是在启示我们要齐心协力……
2.给下面一段话中加点的字注音。(2分)
我憧( )憬着美好的明天,我向往着幸福的未来。但我知道:美好明天与幸福未来的实现,需要锲( )而不舍的拼搏,需要迎难而上的执着。
1.下面句子中有两个错别字,请改正后用正楷字将整个句子抄写在田字格中。(2分)
五彩缤分的花季,朝气篷勃的青春。
23. (本题满分10分)
对于正整数
≥2,用
表示关于
的一元二次方程
有实数根的有序数组
的组数,其中
(
和
可以相等);对于随机选取的
(
和
可以相等),记
为关于
的一元二次方程
有实数根的概率。
(1)求
和
;
(2)求证:对任意正整数
≥2,有
.
[解析] [必做题]本小题主要考查概率的基本知识和记数原理,考查探究能力。满分10分。
![]()
海南宁夏卷
(22)(本小题满分10分)选修4-1;几何证明选讲
如图,已知
ABC中的两条角平分线
和
相交于
,
B=60
,
在
上,且
。
(1)证明:
四点共圆;
(2)证明:CE平分
DEF。
(22)解:
(Ⅰ)在△ABC中,因为∠B=60°,
所以∠BAC+∠BCA=120°.
因为AD,CE是角平分线,
所以∠HAC+∠HCA=60°,
故∠AHC=120°.
于是∠EHD=∠AHC=120°.
因为∠EBD+∠EHD=180°,
所以B,D,H,E四点共圆。
(Ⅱ)连结BH,则BH为
的平分线,得
30°
由(Ⅰ)知B,D,H,E四点共圆,
所以
30°
又
60°,由已知可得
,
可得
30°
所以CE平分![]()
(23)(本小题满分10分)选修4-4:坐标系与参数方程。
已知曲线C
:
(t为参数), C
:
(
为参数)。
(1)化C
,C
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C
上的点P对应的参数为
,Q为C
上的动点,求
中点
到直线
(t为参数)距离的最小值。
(23)解:
(Ⅰ)
为圆心是
,半径是1的圆。
为中心是坐标原点,焦点在
轴上,长半轴长是8,短半轴长是3的椭圆。
(Ⅱ)当
时,
,故![]()
为直线
,
M到
的距离
从而当
时,
取得最小值
(24)(本小题满分10分)选修4-5:不等式选讲
如图,
为数轴的原点,
为数轴上三点,
为线段
上的动点,设
表示
与原点的距离,
表示
到
距离4倍与
到
距离的6倍的和.
(1)将
表示为
的函数;
(2)要使
的值不超过70,
应该在什么范围内取值?
(24)解:
(Ⅰ)
(Ⅱ)依题意,
满足
![]()
解不等式组,其解集为![]()
所以
辽宁理卷
( 22 ) (本小题满分 10 分)选修 4- l :几何证明选讲
己知△ABC中,AB=AC , D是△ABC外接圆
劣弧
上的点(不与点A , C重合),延长BD至E。
(1)求证:AD 的延长线平分
;
(2)若
,△ABC中BC边上的高
,
求△ABC外接圆的面积.
( 22 ) 解:( 1 )如图,设F为AD延长线上一点,∵A,B,C, D 四点共圆,
=
, 又AB=AC ,∴
,且
,
∴
,对顶角
,故
,
故AD 的延长线平分
。---------------5分
.( 2)设O为外接圆圆心,连接AO交BC于H ,则AH⊥BC ,
连接 OC ,由题意
OAC=
OCA =
,
,
∴
,设圆半径为r,则
,
得:r= 2 ,故外接圆面积为
。 ---------10 分
( 23 ) (本小题满分 10 分)选修 4- 4 :极坐标与参数方程
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
,M , N分别为曲线C与x轴,y轴的交点.
(1)写出曲线C的直角坐标方程,并求M , N的极坐标;
(2)设M , N的中点为P,求直线OP的极坐标方程.
(
23 )解:(1)由
得:
,
∴曲线C的直角坐标方程为
,即
,
当
时,
,∴M的极坐标(2,0);
当
时,
,∴N的极坐标
。-----------------5分
(2)M的直角坐标为(2,0),N的直角坐标为
,∴P的直角坐标为
,
则P的极坐标为
,直线OP的极坐标方程为
.----10分
( 24 ) (本小题满分 10 分)选修 4- 5 :不等式选讲
设函数
,
(1)若
,解不等式
;
(2)如果
,
,求a的取值范围。
(
24 )解:(1)当
时,
,由
得:
,
(法一)由绝对值的几何意义知不等式的解集为
。
(法二)不等式可化为
或
或
,
∴不等式的解集为
。-------------5分
(2)若
,
,不满足题设条件;
若
,
,
的最小值为
;
若
,
,
的最小值为
。
所以对于
,
的充要条件是
,从而a的取值范围
。-------------10分
22.
(本题满分10分)
在平面直角坐标系
中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在
轴上。
(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点
的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为
,求
关于
的表达式。
[解析] [必做题]本小题主要考查直线、抛物线及两点间的距离公式等基本知识,考查运算求解能力。满分10分。
![]()
![]()
21.[选做题]在A、B、C、D四小题中只能选做两题,每小题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
A.选修4 - 1:几何证明选讲
如图,在四边形ABCD中,△ABC≌△BAD.
求证:AB∥CD.
[解析] 本小题主要考查四边形、全等三角形的有关知识,考查推理论证能力。满分10分。
证明:由△ABC≌△BAD得∠ACB=∠BDA,故A、B、C、D四点共圆,从而∠CBA=∠CDB。再由△ABC≌△BAD得∠CAB=∠DBA。因此∠DBA=∠CDB,所以AB∥CD。
B. 选修4 - 2:矩阵与变换
求矩阵
的逆矩阵.
[解析] 本小题主要考查逆矩阵的求法,考查运算求解能力。满分10分。
解:设矩阵A的逆矩阵为
则![]()
即
故![]()
解得:
,
从而A的逆矩阵为
.
C. 选修4 - 4:坐标系与参数方程
已知曲线C的参数方程为
(
为参数,
).
求曲线C的普通方程。
[解析] 本小题主要考查参数方程和普通方程的基本知识,考查转化问题的能力。满分10分。
解:因为
所以![]()
故曲线C的普通方程为:
.
D. 选修4 - 5:不等式选讲
设
≥
>0,求证:
≥
.
[解析] 本小题主要考查比较法证明不等式的常见方法,考查代数式的变形能力。满分10分。
证明:![]()
因为
≥
>0,所以
≥0,
>0,从而
≥0,
即
≥
.
[必做题]第22题、第23题,每题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com